From: Meta-analysis of prediction models for predicting lymph node metastasis in thyroid cancer
Subgroup | Training set | Validation set | ||||
---|---|---|---|---|---|---|
Events | Samplesize | c-index | Events | Samplesize | c-index | |
LNM | Â | Â | Â | Â | Â | Â |
Model | Â | Â | Â | Â | Â | Â |
 LR(Logistic regression) | 23,903 | 57,386 | 0.787(0.772–0.802) | 5614 | 14,556 | 0.784(0.765–0.802) |
 LASSO | 357 | 1113 | 0.739(0.691–0.787) | 177 | 588 | 0.695(0.549–0.841) |
RF(Random Forest) | 2536 | 5082 | 0.745(0.671–0.818) | 215 | 414 | 0.743(0.700-0.787) |
 GBM(Gradient Boosting Machine) | 2133 | 4601 | 0.703(0.629–0.777) | 32 | 118 | 0.909(0.849–0.969) |
 SVM(Support Vector Machine) | 1659 | 2765 | 0.790(0.767–0.814) | 215 | 414 | 0.723(0.678–0.767) |
 ANN(Artificial Neural Network) | 2311 | 4036 | 0.721(0.685–0.757) | 215 | 414 | 0.722(0.677–0.766) |
 KNN(K-Nearest Neighbor) | 1360 | 2861 | 0.696(0.567–0.824) |  |  |  |
DT(Decision Tree) | 2311 | 4036 | 0.643(0.585-0.700) | 215 | 414 | 0.593(0.544–0.642) |
 BN(Batch Normalization) | 524 | 950 | 0.748(0.720–0.776) | 215 | 414 | 0.709(0.664–0.791) |
 DL(Deep Learning) | 225 | 1046 | 0.670(0.631–0.709) |  |  |  |
Overall | 37,319 | 83,876 | 0.762(0.747–0.777) | 6898 | 17,332 | 0.773(0.754–0.791) |
LR Variable | Â | Â | Â | Â | Â | Â |
Clinical characteristics | 19,131 | 51,893 | 0.784(0.769-0.800) | 4711 | 11,746 | 0.778(0.758–0.797) |
Radiomics | 308 | 591 | 0.857(0.800-0.914) | 145 | 359 | 0.870(0.809–0.931) |
Clinical characteristics + Genomics | 1137 | 3768 | 0.792(0.692–0.892) | 379 | 1070 | 0.821(0.637-1.000) |
Rdiomics + Ultrasonics | 55 | 600 | 0.946(0.910–0.981) | 31 | 286 | 0.914(0.841–0.987) |
Ultrasonics + Clinical characteristics | 131 | 300 | 0.905(0.843–0.966) | 255 | 420 | 0.881(0.853–0.910) |
Radiomics + Clinical characteristics | 318 | 637 | 0.742(0.686–0.797) | 140 | 255 | 0.672(0.639–0.706) |
Central LNM | Â | Â | Â | Â | Â | Â |
Model | Â | Â | Â | Â | Â | Â |
LR(Logistic regression) | 17,021 | 44,245 | 0.774(0.759–0.789) | 5292 | 12,511 | 0.771(0.750–0.791) |
LASSO | 160 | 439 | 0.780(0.735–0.825) | 77 | 220 | 0.770(0.703–0.837) |
RF(Random Forest) | 1401 | 3267 | 0.725(0.616–0.835) | 215 | 414 | 0.743(0.700-0.787) |
GBM(Gradient Boosting Machine) | 998 | 2786 | 0.700(0.604–0.795) | 32 | 118 | 0.909(0.849–0.969 |
SVM(Support Vector Machine) | 524 | 950 | 0.776(0.749–0.803) | 215 | 414 | 0.723(0.678–0.767) |
ANN(Artificial Neural Network) | 1176 | 2221 | 0.739(0.721–0.757) | 215 | 414 | 0.722(0.677–0.766) |
KNN(K-Nearest Neighbor) | 225 | 1046 | 0.629(0.589–0.669) |  |  |  |
DT(Decision Tree) | 1176 | 2221 | 0.648(0.545–0.752) | 215 | 414 | 0.593(0.544–0.642) |
BN(Batch Normalization) | 524 | 950 | 0.748(0.720–0.776) | 215 | 414 | 0.709(0.664–0.754) |
DL(Deep Learning) | 225 | 1046 | 0.670(0.631–0.709) |  |  |  |
Overall | 23,430 | 59,171 | 0.762(0.747–0.777) | 6476 | 14,919 | 0.762(0.747–0.777) |
LR Variable | Â | Â | Â | Â | Â | Â |
Clinical characteristics | 15,421 | 40,850 | 0.773(0.756–0.789) | 4533 | 10,534 | 0.775(0.754–0.795) |
Radiomics | 218 | 311 | 0.830(0.785–0.875) | 81 | 132 | 0.792(0.715–0.869) |
Clinical characteristics + Genomics | 960 | 2570 | 0.818(0.700-0.937) | 379 | 1070 | 0.821(0.637-1.000) |
Rdiomics + Clinical characteristics | 318 | 637 | 0.742(0.686–0.797) | 140 | 255 | 0.672(0.639–0.706) |
Ultrasonics + Clinical characteristics | 104 | 300 | 0.774(0.759–0.789) | 159 | 420 | 0.871(0.836–0.907) |
Lateral Cervical LNM | Â | Â | Â | Â | Â | Â |
Model | Â | Â | Â | Â | Â | Â |
LR(Logistic regression) | 6882 | 13,141 | 0.826(0.792–0.861) | 322 | 2045 | 0.848(0.813–0.883) |
LASSO | 197 | 674 | 0.712(0.670–0.755) | 100 | 368 | 0.621(0.560–0.682) |
RF(Random Forest) | 1135 | 1815 | 0.800(0.784–0.816) |  |  |  |
GBM(Gradient Boosting Machine) | 1135 | 1815 | 0.720(0.701–0.739) |  |  |  |
SVM(Support Vector Machine) | 1135 | 1815 | 0.800(0.784–0.816) |  |  |  |
ANN(Artificial Neural Network) | 1135 | 1815 | 0.690(0.671–0.709) |  |  |  |
KNN(K-Nearest Neighbor) | 1135 | 1815 | 0.760(0.742–0.778) |  |  |  |
DT(Decision Tree) | 1135 | 1815 | 0.630(0.609–0.651) |  |  |  |
Overall | 13,889 | 24,705 | 0.803(0.773–0.834) | 422 | 2413 | 0.829(0.779–0.879) |
LR Variable | Â | Â | Â | Â | Â | Â |
Clinical characteristics | 3710 | 12,071 | 0.818(0.781–0.855) | 178 | 1112 | 0.800(0.765–0.835) |
Radiomics | 90 | 280 | 0.899(0.862–0.936) | 64 | 227 | 0.908(0.867–0.949) |
Clinical characteristics + Genomics | 177 | 1198 | 0.714(0.674–0.754) |  |  |  |
Rdiomics + Ultrasonics | 55 | 600 | 0.946(0.910–0.981) | 31 | 286 | 0.914(0.841–0.987) |
Ultrasonics + Clinical characteristics | 27 | 300 | 0.938(0.887–0.989) | 49 | 420 | 0.901(0.852–0.949) |