From: Meta-analysis of prediction models for predicting lymph node metastasis in thyroid cancer
Subgroup | Training set | Validation set | ||||||
---|---|---|---|---|---|---|---|---|
Events | Samplesize | Sen | Spe | Events | Samplesize | Sen | Spe | |
LNM | Â | Â | Â | Â | Â | Â | Â | Â |
Model | Â | Â | Â | Â | Â | Â | Â | Â |
 LR(Logistic regression) | 19,597 | 55,631 | 0.71(0.69–0.73) | 0.77(0.74–0.79) | 5173 | 12,845 | 0.72(0.70–0.74) | 0.77(0.73–0.80) |
LASSO | 357 | 1113 | 0.66–0.73 | 0.60–0.70 | 177 | 588 | 0.69–0.74 | 0.55–0.73 |
RF(Random Forest) | 2536 | 5082 | 0.76(0.54–0.90) | 0.59(0.53–0.65) | 215 | 414 | 0.72–0.78 | 0.67–0.68 |
GBM(Gradient Boosting Machine) | 2133 | 4601 | 0.49(0.30–0.69) | 0.72(0.64–0.78) | 32 | 118 | 0.87 | 0.86 |
 SVM(Support Vector Machine) | 1659 | 2765 | 0.81–0.89 | 0.53–0.60 | 215 | 414 | 0.80–0.87 | 0.56–0.58 |
ANN(Artificial Neural Network) | 2311 | 4036 | 0.69–0.82 | 0.44–0.66 | 215 | 414 | 0.79–0.81 | 0.51–0.57 |
 KNN(K-Nearest Neighbor) | 1360 | 2861 | 0.32–0.90 | 0.36–0.63 |  |  |  |  |
DT(Decision Tree) | 2311 | 4036 | 0.60–0.93 | 0.26–0.62 | 215 | 414 | 0.94–0.96 | 0.23–0.24 |
BN(Batch Normalization) | 524 | 950 | 0.79 | 0.61 | 215 | 414 | 0.61–0.88 | 0.48–0.73 |
 DL(Deep Learning) | 225 | 1046 | 0.44 | 0.74 |  |  |  |  |
Overall | 33,013 | 82,121 | 0.71(0.69–0.74) | 0.74(0.72–0.76) | 6457 | 15,621 | 0.74(0.72–0.76) | 0.74(0.70–0.77) |
LR Variable | Â | Â | Â | Â | Â | Â | Â | Â |
Clinical characteristics | 17,648 | 49,435 | 0.71(0.69–0.73) | 0.76(0.74–0.78) | 4270 | 10,032 | 0.71(0.68–0.73) | 0.75(0.72–0.78) |
Radiomics | 308 | 591 | 0.71–0.79 | 0.75–0.86 | 145 | 359 | 0.75(0.66–0.81) | 0.84(0.78–0.88) |
Clinical characteristics + Genomics | 1137 | 3768 | 0.69(0.59–0.76) | 0.76(0.41–0.93) | 379 | 1070 | 0.73–0.90 | 0.63–0.96 |
Rdiomics + Ultrasonics | 55 | 600 | 0.87 | 0.93 | 31 | 286 | 0.81 | 0.95 |
Ultrasonics + Clinical characteristics | 131 | 300 | 0.82–0.84 | 0.82–0.94 | 208 | 420 | 0.78(0.71–0.83) | 0.89(0.86–0.92) |
Rdiomics + Clinical characteristics | 318 | 637 | 0.65(0.59–0.71) | 0.77(0.71–0.83) | 140 | 255 | 0.69(0.63–0.75) | 0.54(0.44–0.63) |
Central LNM | Â | Â | Â | Â | Â | Â | Â | Â |
Model | Â | Â | Â | Â | Â | Â | Â | Â |
LR(Logistic regression) | 17,648 | 49,165 | 0.69(0.66–0.71) | 0.77(0.74–0.79) | 4869 | 11,217 | 0.68(0.66–0.71) | 0.76(0.74–0.78) |
LASSO | 160 | 439 | 0.71 | 0.7 | 77 | 220 | 0.74 | 0.73 |
RF(Random Forest) | 1401 | 3267 | 0.39–0.88 | 0.60–0.63 | 215 | 414 | 0.72–0.78 | 0.67–0.68 |
GBM(Gradient Boosting Machine) | 998 | 2786 | 0.46(0.26–0.66) | 0.70(0.62–0.76) | 32 | 118 | 0.87 | 0.86 |
SVM(Support Vector Machine) | 524 | 950 | 0.89 | 0.83 | 215 | 414 | 0.80–0.87 | 0.56–0.58 |
ANN(Artificial Neural Network) | 1176 | 2221 | 0.69–0.82 | 0.54–0.66 | 215 | 414 | 0.79–0.81 | 0.51–0.57 |
KNN(K-Nearest Neighbor) | 225 | 1046 | 0.32 | 0.63 | Â | Â | Â | Â |
DT(Decision Tree) | 1176 | 2221 | 0.60–0.93 | 0.26–0.62 | 215 | 414 | 0.94–0.96 | 0.23–0.24 |
BN(Batch Normalization) | 524 | 950 | 0.79 | 0.61 | 215 | 414 | 0.61–0.88 | 0.48–0.73 |
 DL(Deep Learning) | 225 | 1046 | 0.44 | 0.74 |  |  |  |  |
Overall | 24,057 | 64,091 | 0.68(0.65–0.71) | 0.74(0.72–0.76) | 6053 | 13,625 | 0.74(0.71–0.76) | 0.72(0.68–0.76) |
LR Variable | Â | Â | Â | Â | Â | Â | Â | Â |
Clinical characteristics | 14,775 | 39,017 | 0.68(0.66–0.71) | 0.76(0.74–0.78) | 4110 | 9340 | 0.70(0.67–0.73) | 0.76(0.72–0.79) |
Radiomics | 218 | 311 | 0.71–0.77 | 0.75–0.86 | 81 | 132 | 0.70–0.73 | 0.79–0.88 |
Clinical characteristics + Genomics | 960 | 2570 | 0.66–0.82 | 0.67–0.97 | 379 | 1070 | 0.73–0.90 | 0.63–0.96 |
Rdiomics + Clinical characteristics | 318 | 637 | 0.65(0.59–0.71) | 0.77(0.71–0.83) | 140 | 255 | 0.69(0.63–0.75) | 0.54(0.44–0.63) |
Ultrasonics + Clinical characteristics | 104 | 300 | 0.84 | 0.82 | 112 | 420 | 0.71–0.83 | 0.82–0.88 |
Lateral Cervical LNM | Â | Â | Â | Â | Â | Â | Â | Â |
Model | Â | Â | Â | Â | Â | Â | Â | Â |
LR(Logistic regression) | 3222 | 12,796 | 0.78(0.75–0.81) | 0.79(0.70–0.85) | 304 | 1628 | 0.77(0.72–0.82) | 0.84(0.77–0.89) |
LASSO | 197 | 674 | 0.66–0.73 | 0.60–0.66 | 100 | 368 | 0.69 | 0.55 |
RF(Random Forest) | 1135 | 1815 | 0.89 | 0.49 | Â | Â | Â | Â |
GBM(Gradient Boosting Machine) | 1135 | 1815 | 0.55 | 0.77 | Â | Â | Â | Â |
SVM(Support Vector Machine) | 1135 | 1815 | 0.81 | 0.6 | Â | Â | Â | Â |
ANN(Artificial Neural Network) | 1135 | 1815 | 0.79 | 0.44 | Â | Â | Â | Â |
KNN(K-Nearest Neighbor) | 1135 | 1815 | 0.9 | 0.36 | Â | Â | Â | Â |
DT(Decision Tree) | 1135 | 1815 | 0.84 | 0.41 | Â | Â | Â | Â |
Overall | 10,229 | 24,360 | 0.78(0.75–0.81) | 0.74(0.66–0.81) | 404 | 1996 | 0.77(0.72–0.82) | 0.82(0.74–0.88) |
LR Variable | Â | Â | Â | Â | Â | Â | Â | Â |
Clinical characteristics | 2873 | 10,418 | 0.78(0.75–0.81) | 0.78(0.69–0.85) | 160 | 695 | 0.76(0.69–0.82) | 0.74(0.66–0.82) |
Radiomics | 90 | 280 | 0.79 | 0.81 | 64 | 227 | 0.74–0.88 | 0.80–0.88 |
Clinical characteristics + Genomics | 177 | 1198 | 0.61 | 0.3 |  |  |  |  |
Rdiomics + Ultrasonics | 55 | 600 | 0.87 | 0.93 | 31 | 286 | 80.6 | 94.5 |
Ultrasonics + Clinical characteristics | 27 | 300 | 0.87 | 0.93 | 49 | 420 | 0.73–0.87 | 0.89–0.93 |