Skip to main content

Table 5 Model Performance Index Evaluation

From: Peritoneal cytology predicting distant metastasis in uterine carcinosarcoma: machine learning model development and validation

Evaluation of the performance of the training set

Model

Threshold

Accuracy

Sensitivity

Specificity

Precision

F1

Logistic

0.113

0.768

0.914

0.733

0.456

0.609

SVM

0.146

0.779

0.882

0.754

0.468

0.612

GBM

0.189

0.814

0.890

0.796

0.517

0.654

NeuralNetwork

0.239

0.817

0.831

0.813

0.522

0.641

RandomForest

0.500

0.972

0.867

0.998

0.990

0.925

KNN

0.202

0.831

0.975

0.796

0.540

0.695

Adaboost

0.500

0.852

0.622

0.908

0.625

0.624

LightGBM

0.166

0.791

0.905

0.763

0.484

0.631

Test set performance evaluation

Model

Threshold

Accuracy

Sensitivity

Specificity

Precision

F1

Logistic

0.113

0.758

0.872

0.730

0.442

0.587

SVM

0.146

0.779

0.862

0.758

0.467

0.606

GBM

0.189

0.805

0.842

0.796

0.503

0.630

NeuralNetwork

0.239

0.806

0.788

0.810

0.505

0.615

RandomForest

0.500

0.816

0.458

0.903

0.538

0.495

KNN

0.202

0.793

0.833

0.784

0.486

0.613

Adaboost

0.500

0.860

0.606

0.923

0.658

0.631

LightGBM

0.166

0.769

0.808

0.759

0.452

0.580