Evaluation of the performance of the training set | ||||||
Model | Threshold | Accuracy | Sensitivity | Specificity | Precision | F1 |
Logistic | 0.113 | 0.768 | 0.914 | 0.733 | 0.456 | 0.609 |
SVM | 0.146 | 0.779 | 0.882 | 0.754 | 0.468 | 0.612 |
GBM | 0.189 | 0.814 | 0.890 | 0.796 | 0.517 | 0.654 |
NeuralNetwork | 0.239 | 0.817 | 0.831 | 0.813 | 0.522 | 0.641 |
RandomForest | 0.500 | 0.972 | 0.867 | 0.998 | 0.990 | 0.925 |
KNN | 0.202 | 0.831 | 0.975 | 0.796 | 0.540 | 0.695 |
Adaboost | 0.500 | 0.852 | 0.622 | 0.908 | 0.625 | 0.624 |
LightGBM | 0.166 | 0.791 | 0.905 | 0.763 | 0.484 | 0.631 |
Test set performance evaluation | ||||||
Model | Threshold | Accuracy | Sensitivity | Specificity | Precision | F1 |
Logistic | 0.113 | 0.758 | 0.872 | 0.730 | 0.442 | 0.587 |
SVM | 0.146 | 0.779 | 0.862 | 0.758 | 0.467 | 0.606 |
GBM | 0.189 | 0.805 | 0.842 | 0.796 | 0.503 | 0.630 |
NeuralNetwork | 0.239 | 0.806 | 0.788 | 0.810 | 0.505 | 0.615 |
RandomForest | 0.500 | 0.816 | 0.458 | 0.903 | 0.538 | 0.495 |
KNN | 0.202 | 0.793 | 0.833 | 0.784 | 0.486 | 0.613 |
Adaboost | 0.500 | 0.860 | 0.606 | 0.923 | 0.658 | 0.631 |
LightGBM | 0.166 | 0.769 | 0.808 | 0.759 | 0.452 | 0.580 |