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Abstract 

Objective  This study develops and validates a machine learning model using peritoneal cytology to predict distant 
metastasis in uterine carcinosarcoma, aiding clinical decision-making.

Methods  This study utilized detailed clinical data and peritoneal cytology findings from uterine carcinosarcoma 
patients in the SEER database. Eight machine learning algorithms—Logistic Regression, SVM, GBM, Neural Network, 
RandomForest, KNN, AdaBoost, and LightGBM—were applied to predict distant metastasis. Model performance 
was assessed using AUC, calibration curves, DCA, confusion matrices, sensitivity, and specificity. The Logistic Regres-
sion model was visualized with a nomogram, and its results were analyzed. SHAP values were used to interpret 
the best-performing machine learning model.

Results  Peritoneal cytology, T stage, age, and tumor size were key factors influencing distant metastasis in uterine 
carcinosarcoma patients. Peritoneal cytology had significant weight in the prediction models. The logistic regression 
model demonstrated excellent predictive performance with an AUC of 0.882 in the training set and 0.881 in the inter-
nal test set. The model was visualized and interpreted using a nomogram. In comprehensive evaluations, GBM 
was identified as the best-performing model and was explained using SHAP values. Additionally, calibration and DCA 
curves indicated that both models have significant potential clinical utility.

Conclusion  This study introduces the first effective tool for predicting distant metastasis in uterine carcinosarcoma 
patients by integrating peritoneal cytology features into model construction. It aids in early identification of high-risk 
patients, enhancing follow-up and monitoring during tumor development, and supports the optimization of person-
alized treatment strategies.
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Introduction
Uterine Carcinosarcoma (UCS), also known as malignant 
mixed Müllerian tumor, is a rare gynecological malig-
nancy with a poor prognosis, accounting for approxi-
mately 5% of all uterine tumors [1]. UCS is characterized 
by a high rate of lymphatic diffusion and significant ten-
dencies for peritoneal and hematogenous metastases [2]. 
Literature reports that up to 30–40% of UCS patients 
present with lymph node metastasis at initial diagnosis, 
while about 10% exhibit visceral metastases, particularly 
pulmonary involvement [3]. Consequently, the five-year 
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survival rate for patients with locally advanced or meta-
static disease typically does not exceed 10%–30% [4].

Due to its rarity, specific treatment guidelines for UCS 
are limited. The prevailing theory is the "conversion 
hypothesis," suggesting that UCS may originate from 
an endometrial tumor clone and subsequently undergo 
metaplastic differentiation [5]. Therefore, current man-
agement largely follows the guidelines for endometrial 
cancer. Despite constituting only a small fraction of 
endometrial cancers, UCS exhibits a higher risk of dis-
tant metastasis and recurrence, leading to poorer patient 
outcomes. Early identification of high-risk patients with 
distant metastases and implementation of targeted com-
prehensive treatment strategies are crucial for improving 
prognosis.

Cytoreductive surgery is the primary treatment for 
UCS patients [6, 7]. Comprehensive surgical staging, 
including abdominal lavage, hysterectomy, salpingo-
oophorectomy, and lymphadenectomy, is recommended 
for all operable patients [8]. Peritoneal cytology, which 
involves analyzing exfoliated cancer cells from intraoper-
ative peritoneal lavage fluid or aspiration samples, helps 
detect free cancer cells in the peritoneal cavity. Preopera-
tive fine needle aspiration can also provide quick and safe 
cytological assessments with minimal patient discomfort.
This technique identifies minimal metastatic lesions not 
yet visible as masses or nodules, enabling early detection 
of potential peritoneal metastases beyond the uterus. 
Early detection of subclinical metastases, often over-
looked in imaging studies, is particularly valuable.

Initially, positive peritoneal cytology was classified as 
stage IIIA under the International Federation of Gyne-
cology and Obstetrics(FIGO) 1988 staging criteria for 
endometrial cancer. However, in 2009, FIGO revised its 
guidelines [9] to exclude peritoneal cytology from the 
staging system due to controversies regarding its prog-
nostic significance [10, 11]. This change resulted in a 
decline in peritoneal cytology sampling during hysterec-
tomies between 2010 and 2017 [12]. Despite this, several 
international authorities, including the European Soci-
ety of Medical Oncology (ESMO), European Society of 
Gynaecological Oncology (ESGO), European Society for 
Radiotherapy & Oncology (ESTRO), Japanese Society of 
Gynecologic Oncology (JSGO), National Comprehensive 
Cancer Network (NCCN), and American Joint Commit-
tee on Cancer (AJCC), continue to support collecting 
peritoneal cytology samples during surgery and including 
them in pathology reports [13–15]. Similarly, the FIGO 
Gynecologic Oncology Committee recommends collect-
ing peritoneal cytology samples, even though it has been 
removed from formal staging criteria, emphasizing that 
"positive cytology must be reported separately without 
affecting staging" [16]. Additionally, the 2021 ESGO/

ESTRO/ESP guidelines highlight that malignant perito-
neal cytology is associated with lower survival rates [17]. 
Recent studies have further shown that positive perito-
neal cytology has significant prognostic implications, 
particularly for non-endometrioid types of endometrial 
cancer [18–20]. Thus, although peritoneal cytology is 
not used for formal staging, its presence provides impor-
tant information for evaluating disease progression and 
patient prognosis, especially in specific types of endome-
trial cancer, serving as a valuable supplement to staging.

This study aims to develop and validate a predictive 
model that integrates peritoneal cytology findings to 
forecast the development of distant metastasis in UCS 
patients. By combining peritoneal cytology with other 
clinicopathological features, we seek to provide clinicians 
with an effective tool for identifying high-risk popula-
tions, optimizing medical resource allocation, and sup-
porting personalized treatment strategies.Additionally, 
given the current lack of international consensus on the 
role of peritoneal cytology in UCS, our work may provide 
valuable data to support future updates to diagnostic and 
treatment guidelines.

Materials and methods
Data preparation
Data for this study were sourced from Surveillance, Epi-
demiology, and End Results Program(SEER) public data-
base, utilizing SEER*Stat software version 8.4.4 for data 
extraction. Our analysis centered on patients diagnosed 
with UCS across 17 Registries between 2000 and 2021, 
with data submission in November 2023 [21]. Cases were 
screened using the "site code ICD-O-3 / WHO 2008", 
specifying the uterus as the site of origin (codes C54.0-
C54.9, C55.9), and identified by the malignant tissue 
type defined as carcinosarcoma according to the "ICD-
O-3 Histology/Behavior" codes (8950/3, 8951/3, 8980/3, 
8981/3).For each patient, demographic and clinical vari-
ables were extracted, encompassing age, race, marital sta-
tus, median family income, rural–urban continuum code, 
time to diagnosis, interval from diagnosis to treatment 
initiation, tumor dimensions, peritoneal cytology results, 
histological grade and TNM staging (AJCC 7th edition). 
Assessment of distant metastasis was conducted using 
the combinatorial staging data within the SEER database.
Inclusion criteria comprised: histopathologically con-
firmed disease, single primary tumors, and diagnoses 
made between 2010 and 2021. Patients were excluded if 
they had missing data regarding peritoneal cytology and 
distant metastasis. Ultimately, a cohort of 3,434 endome-
trial cancer patients met the criteria for detailed analysis.
This study adheres to the Declaration of Helsinki prin-
ciples. Given that the SEER data are de-identified and 
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available for research purposes, local ethics committee 
approval was not required.

Data processing
In this study, any data entries with more than 35% miss-
ing parameters were excluded from the analysis. The 
remaining features underwent preprocessing through 
multiple imputation (MI) facilitated by a multi-clas-
sification regression model [22, 23]. Patient data were 
randomly partitioned into a training set and an internal 
test set at a ratio of 7:3, where the former was utilized 
for model development and the latter served for valida-
tion and evaluation. Continuous variables are reported 
as mean ± standard deviation (SD) if normally distrib-
uted, as assessed by the Kolmogorov–Smirnov test, or 
as median (interquartile range) if not, with comparisons 
made using the t-test or Mann–Whitney U test, respec-
tively. Categorical variables are summarized as counts 
and frequencies, with comparisons conducted via chi-
square or Fisher’s exact tests. All statistical analyses 
were two-tailed, with P < 0.05 denoting statistical sig-
nificance.To address the imbalance in the dataset due to 
the low incidence of distant metastases, we applied two 
techniques during the machine learning phase: resam-
pling and weighted processing. To address class imbal-
ance, we used the SMOTENC method [24] to increase 
minority class samples in the training set and retained 
original data for the test set to assess model gener-
alization. For weighting, we assigned higher weights 
to minority class samples and lower weights to major-
ity ones, based on the inverse of their proportions, [25] 
ensuring the model’s attention to the minority class dur-
ing training while allowing unbiased evaluation on an 
untouched test set. Both approaches were compared 
against untreated data post-modeling to evaluate their 
effectiveness.

Factor screening
To evaluate the correlations among features in the train-
ing set, we applied Spearman correlation analysis, with a 
correlation coefficient threshold set at 0.7. A coefficient 
below this threshold suggests an absence of significant 
multicollinearity among characteristic variables.Ini-
tially, we generated a correlation heatmap based on the 
Spearman coefficients to visualize the degree of asso-
ciation between each pair of variables. To delve deeper 
into the structural relationships among these variables, 
we conducted cluster analysis using[1-abs(spearman_
cor)] as the distance measure. This approach allows for 
an equal emphasis on both negative and positive cor-
relations, ensuring a balanced evaluation of variable 
similarity. The clustering results were represented as a 
dendrogram, highlighting the hierarchical structure of 

feature relationships.When two or more features exhibit 
high correlation, they tend to provide similar informa-
tion. Including all such highly correlated features in 
a predictive model can unnecessarily increase model 
complexity without significantly enhancing its perfor-
mance.Following this, we used the occurrence of dis-
tant metastasis as the outcome variable and performed 
univariate analysis to identify predictors significantly 
associated with distant metastasis (P < 0.05) within the 
training set. The variables that met this significance 
threshold were subsequently included in multivariate 
logistic regression analysis. The final feature set for the 
machine learning model was then determined based on 
the results of this multivariate logistic regression analy-
sis (P < 0.05), ensuring only the most relevant predictors 
were selected.

Model construction and evaluation
Based on the feature selection methodology described 
above, we constructed eight distinct machine learn-
ing algorithms to develop predictive models for dis-
tant metastasis in UCS, including Logistic Regression, 
Support Vector Machine (SVM), Gradient Boosting 
Machine (GBM), Neural Network (NeuralNet), Ran-
domForest, K-Nearest Neighbors (KNN), AdaBoost, 
and LightGBM. Logistic Regression, a linear model 
suitable for linearly separable features, offers simplic-
ity and interpretability; SVM maximizes the margin 
between classes by identifying the optimal hyperplane, 
providing robust classification especially in high-
dimensional spaces; [26] GBM iteratively builds weak 
classifiers to enhance predictive power, capturing 
nonlinear relationships and interaction effects while 
optimizing the loss function via gradient descent; [27] 
Neural Networks emulate the human brain’s structure 
through multiple layers of neurons, enabling the learn-
ing of complex features and modeling of nonlinear 
relationships; Random Forest integrates multiple deci-
sion trees to improve stability and accuracy, reduc-
ing overfitting and enhancing generalization; [28] 
KNN, an instance-based learning method, predicts 
categories by calculating distances between new sam-
ples and existing ones; [29] AdaBoost improves pre-
dictive ability by iteratively adjusting sample weights, 
focusing more on misclassified instances; [30] and 
LightGBM, an efficient gradient boosting framework, 
accelerates model training using histograms and fea-
ture parallelization [31]. During the training process, 
these algorithms underwent tenfold cross-validation 
on the training set data to obtain a robust estimate of 
model performance. In evaluating the performance of 
the predictive models, we adopted a comprehensive 
assessment system designed to thoroughly measure 



Page 4 of 16Lin et al. World Journal of Surgical Oncology          (2025) 23:167 

both the classification ability and clinical utility of 
the models. The primary evaluation tool was the area 
under the receiver operating characteristic curve 
(ROC-AUC), which assessed the model’s overall dis-
crimination capability. Additionally, calibration curves 
were used to verify the accuracy of the predicted prob-
abilities, ensuring that the model’s predictions were 
well-calibrated. Decision Curve Analysis (DCA) evalu-
ated the practical application value of the model from 
the perspective of clinical benefit, providing insights 
into its real-world applicability. Moreover, we utilized 
confusion matrices to transparently present the model 
prediction results, determining the optimal threshold 
for the test set based on model accuracy. Various per-
formance metrics were computed, including accuracy, 
sensitivity, specificity, precision, and F1 score, to offer 
detailed insights into the model’s classification perfor-
mance. This comprehensive approach ensured a thor-
ough understanding of the model’s effectiveness and 
reliability in clinical settings.

These are based on four basic values: true positives 
(True Positive, TP), false positives (False Positive, FP), 
true negatives (True Negative, TN), and false negatives 
(False Negative, FN).

Model interpretation
To enhance the usability and interpretability of our 
logistic regression model, we utilized a nomogram for 
intuitive visualization and result interpretation. This 
tool not only simplifies model application but also clar-
ifies the contribution of each covariate to the overall 
prediction score, providing an easy method to estimate 
individual patient probabilities of distant metasta-
sis. The odds ratio (Odds = P / (1-P)) derived from the 
nomogram reflects the likelihood of distant metasta-
sis relative to no occurrence.Based on comprehensive 

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1 Score = 2×
Precision× Sensitivity

Precision+ Sensitivity

performance evaluations, the GBM model was identi-
fied as the optimal predictor for distant metastasis in 
UCS patients, with features ranked by their impor-
tance. SHapley Additive exPlanations(SHAP) plots 
were used to visualize feature contributions, allowing 
for quantitative analysis of each variable’s impact on 
distant metastasis risk [32]. Positive SHAP values indi-
cate risk factors, while negative values suggest protec-
tive factors.We provided personalized explanations for 
two randomly selected patients regarding their likeli-
hood of developing distant metastases based on model 
predictions.

All statistical analyses were conducted using R software 
(version 4.4.1), and the corresponding analysis code is 
available upon request from the authors.

Result
Baseline information and correlation analysis
In this study, we analyzed data from a total of 3,434 UCS 
patients to investigate the relationship between perito-
neal cytology findings and distant metastasis, reveal-
ing a significant association (χ2 = 123.45, p < 0.0001) 
(Table 1)., suggesting that peritoneal cytology may serve 
as an Important reference indicators for primary clinical 
screening. Then,patients were divided into a training set 
and an internal test set in a 7:3 ratio, with baseline char-
acteristics summarized in Table 2; in the training set, sta-
tistically significant differences (p < 0.05) were observed 
between patients with and without distant metastasis 
regarding peritoneal cytology, differentiation grade, T 
stage, N stage, time from diagnosis to treatment, tumor 
size, and age (Table  3). Figure  1 presents the Spearman 
correlation analysis of various feature metrics in the 
training set, where a darker color indicates a higher cor-
relation, with a threshold of 0.7 suggesting strong asso-
ciations (Fig. 1A),

The results of the hierarchical clustering indicate that 
there is no significant multicollinearity among the feature 
variables in the training set (Fig. 1B).

Univariate and multivariable logistic regression
In univariate logistic regression (LR) analysis, positive 
peritoneal cytology, differentiation grade G3, T stage, 
N stage, and tumor size were identified as risk factors 

Table 1  Peritoneal cytology and distant metastasis grouped 
chi-square test

Distant 
metastases

Peritoneal cytology X2 P

Negative Suspicious Positive

Yes 203 33 441 123.45 0.0001

No 2248 94 415
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for distant metastasis in UCS patients (all odds ratios 
[OR] > 1, 95% confidence intervals [CI] > 1, p < 0.05). 
Conversely, age and time from diagnosis to treatment 
were found to be protective factors (OR and 95% CI < 1, 
p < 0.05).Multivariate LR analysis further revealed that 

positive peritoneal cytology, T stage, and tumor size 
remained independent risk factors for distant metastasis 
(OR and 95% CI > 1, p < 0.05), while age was confirmed 
as an independent protective factor (OR and 95% CI < 1, 
p < 0.05) (Table 4).

Table 2  Baseline characteristics of the cohort

Features Training set(N=2404) Test set(N=1030)

0 (N=1930) 1 (N=474) 0 (N=827) 1 (N=203)

Peritoneal cytology

  Negative 1562 (80.9%) 143 (30.2%) 686 (83.0) 60 (29.6)

  Suspicious 75 (3.9%) 21 (4.4%) 19 (2.3) 12 (5.9)

  Positive 293 (15.2%) 310 (65.4%) 122 (14.8) 131 (64.5)

Year of diagnosis

  2010-2013 595 (30.8%) 145 (30.6%) 253 (30.6) 73 (36.0)

  2014-2017 642 (33.3%) 171 (36.1%) 289 (34.9) 55 (27.1)

  2018-1021 693 (35.9%) 158 (33.3%) 285 (34.5) 75 (36.9)

Race

  Whites 1284 (66.5%) 308 (65%) 545 (65.9) 121 (59.6)

  Blacks 455 (23.6%) 117 (24.7%) 193 (23.3) 59 (29.1)

  Asian or Pacific Islander 178 (9.2%) 46 (9.7%) 79 (9.6) 21 (10.3)

  Native American/Alaska Native 13 (0.7%) 3 (0.6%) 10 (1.2) 2 (1.0)

Grade

  G1 76 (3.9%) 4 (0.8%) 22 (2.7) 3 (1.5)

  G2 91 (4.7%) 10 (2.1%) 36 (4.4) 6 (3.0)

  G3 1763 (91.3%) 460 (97%) 769 (93.0) 194 (95.6)

T-7th

  T1/T2 1517 (78.6%) 72 (15.2%) 657 (79.4%) 38 (18.7%)

  T3/T4 413 (21.4%) 402 (84.8%) 170 (20.6%) 165 (81.3%)

N-7th

  N0 1473 (76.3%) 255 (53.8%) 650 (78.6) 114 (56.2)

  N1 281 (14.6%) 120 (25.3%) 114 (13.8) 47 (23.2)

  N2 176 (9.1%) 99 (20.9%) 63 (7.6) 42 (20.7)

Marital status

  married 1002 (51.9%) 269 (56.8%) 403 (48.7%) 115 (56.7%)

  others 928 (48.1%) 205 (43.2%) 424 (51.3%) 88 (43.3%)

Median household income

  <50000 126 (6.5%) 39 (8.2%) 48 (5.8) 15 (7.4)

  50000-90000 1169 (60.6%) 291 (61.4%) 505 (61.1) 125 (61.6)

  >90000 635 (32.9%) 144 (30.4%) 274 (33.1) 63 (31.0)

Urban-rural coding

  An urban area with a population of 1 million or more 1137 (58.9%) 290 (61.2%) 506 (61.2) 119 (58.6)

  Metropolitan areas with a population of 25-1 million 444 (23%) 102 (21.5%) 203 (24.5) 48 (23.6)

  Metropolitan areas with a population of less than 250,000 144 (7.5%) 31 (6.5%) 45 (5.4) 14 (6.9)

  Non-metropolitan area and adjacent 120 (6.2%) 31 (6.5%) 47 (5.7) 15 (7.4)

  Non-metropolitan area and not adjacent 85 (4.4%) 20 (4.2%) 26 (3.1) 7 (3.4)

  Time from diagnosis to treatment (day) 28（15-42） 23（8-36） 28(16-42) 18(4-33.5)

  Tumor size 57（40-80） 75（55-100） 60(40-81.5) 75(50-110)

  Age 67（61-73） 65（59-72） 67（61-74） 65（58-72
）
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Model building and performance evaluation
In constructing a machine learning model to predict 
distant metastasis, we selected key features based on 
multifactor logistic regression (LR), including peri-
toneal cytology status, T stage, tumor size, and age. 
We enhanced the performance of multiple classifica-
tion algorithms using tenfold cross-validation. Results 

demonstrated excellent predictive power across all 
models, with area under the receiver operating char-
acteristic curve (ROC-AUC) values exceeding 0.7 
(Fig.  2). Calibration curves (Fig.  3), decision curve 
analysis (DCA) (Fig.  4), accuracy, recall (sensitivity) 
(Table 5), and other metrics also performed well, indi-
cating the effectiveness of these models for predicting 

Table 3  Difference analysis of the training set

Features 0 (N=1930) 1 (N=474) P

Peritoneal cytology <0.001

  Negative 1562 (80.9%) 143 (30.2%)

  Suspicious 75 (3.9%) 21 (4.4%)

  Positive 293 (15.2%) 310 (65.4%)

Year of diagnosis 0.447

  2010-2013 595 (30.8%) 145 (30.6%)

  2014-2017 642 (33.3%) 171 (36.1%)

  2018-1021 693 (35.9%) 158 (33.3%)

Race 0.932

  Whites 1284 (66.5%) 308 (65%)

  Blacks 455 (23.6%) 117 (24.7%)

  Asian or Pacific Islander 178 (9.2%) 46 (9.7%)

  Native American/Alaska Native 13 (0.7%) 3 (0.6%)

Grade <0.001

  G1 76 (3.9%) 4 (0.8%)

  G2 91 (4.7%) 10 (2.1%)

  G3 1763 (91.3%) 460 (97%)

T-7th <0.001

  T1/T2 1517 (78.6%) 72 (15.2%)

  T3/T4 413 (21.4%) 402 (84.8%)

N-7th <0.001

  N0 1473 (76.3%) 255 (53.8%)

  N1 281 (14.6%) 120 (25.3%)

  N2 176 (9.1%) 99 (20.9%)

Marital status 0.066

  married 1002 (51.9%) 269 (56.8%)

  others 928 (48.1%) 205 (43.2%)

Median household income 0.303

  <50000 126 (6.5%) 39 (8.2%)

  50000-90000 1169 (60.6%) 291 (61.4%)

  >90000 635 (32.9%) 144 (30.4%)

Urban-rural coding 0.872

  An urban area with a population of 1 million or more 1137 (58.9%) 290 (61.2%)

  Metropolitan areas with a population of 25-1 million 444 (23%) 102 (21.5%)

  Metropolitan areas with a population of less than 250,000 144 (7.5%) 31 (6.5%)

  Non-metropolitan area and adjacent 120 (6.2%) 31 (6.5%)

  Non-metropolitan area and not adjacent 85 (4.4%) 20 (4.2%)

  Time from diagnosis to treatment (day) 28（15-42） 23（8-36） <0.001

  Tumor size 57（40-80） 75（55-100） <0.001

  Age 67（61-73） 65（59-72） <0.001
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distant metastasis.Notably, while the Random Forest 
model showed strong performance on the training set, 
significant overfitting was observed in the internal 
test set, leading us to exclude it as the best candidate. 
Using AUC as the primary evaluation criterion, Logis-
tic Regression achieved the highest AUC values of 
0.882 on the training set and 0.881 on the internal test 
set, demonstrating robust discrimination. In handling 
imbalanced datasets, the F1 score is more critical than 
ROC-AUC. A "baseline model" that always predicts dis-
tant metastasis achieved an F1 score of 0.332. Our mod-
els significantly outperformed this baseline, with GBM 
and AdaBoost showing superior F1 scores compared to 
Logistic Regression. However, due to AdaBoost’s lower 
recall rate, which could lead to missed diagnoses, we 
selected the Gradient Boosting Machine (GBM) model 
as optimal. GBM achieved an F1 score of 0.630, dem-
onstrating superior generalization and clinical appli-
cability. In conclusion, the GBM model was chosen as 
the optimal model. Feature importance rankings (Fig. 5) 
highlighted peritoneal cytology as a critical feature for 
improving model performance in both LR and GBM 
models. To further validate the model’s performance 
and ensure transparency, we constructed confusion 

matrices for both models (Fig. 6). Comparisons revealed 
that the GBM model performed better at distinguishing 
cases of distant metastases.

In a "baseline model" that always predicts dis-
tant metastasis, the precision is approximately 0.197. 
Although our developed models significantly outper-
form this baseline model, to further optimize precision, 
we thoroughly investigated the impact of data imbalance 
on model performance and adopted two main strate-
gies: “SMOTE-NC for Synthetic Sampling” and “Adjust-
ing Sample Weights”. Comparing these approaches using 
the GBM model, our results are summarized in Table 6. 
While these techniques improved model accuracy on the 
internal test set, they did so at the expense of sensitivity 
(recall), which is crucial in clinical settings. For a prelimi-
nary screening tool aimed at identifying UCS patients at 
risk for distant metastasis, missing actual cases of dis-
tant metastasis is clinically more serious than reducing 
overall precision. Therefore, we opted to use the GBM 
model trained on unbalanced data as the optimal model 
for practical application, ensuring higher sensitivity and 
minimizing missed diagnoses. This decision was partly 
due to our sufficiently large sample size, which helped 
ensure the accuracy of our results.

Fig. 1  Multicollinearity: (A) The relationship between the feature indicators in the training set through Spearman correlation analysis, with a strong 
correlation between variables greater than 0.7. B Hierarchical cluster analysis of [1 - abs(spearman_cor)] as a distance metric, and a strong 
correlation between variables greater than 0.3
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Model interpretability
During the model interpretability processing phase, the 
logistic regression model was interpreted and applied 
using Nomogram plots (Fig. 7).The optimal GBM model, 

we constructed a feature importance ranking based on 
SHAP values, revealing that in UCS patients, the key fac-
tors influencing distant metastasis were T stage, perito-
neal cytology, tumor size, and age; in the visualization 

Table 4  Univariate logistic regression analysis and multivariate logistic regression analysis

Univariate analysis Multivariate analysis

Features 0 (N=1930) 1 (N=474) OR（95%Cl） P OR（95%Cl） P

Peritoneal cytology

  Negative 1562 (80.9%) 143 (30.2%)

  Suspicious 75 (3.9%) 21 (4.4%) 3.06 (1.83-5.11) P<.001 2.27 (1.25-4.15) P=.007

  Positive 293 (15.2%) 310 (65.4%) 11.56 (9.14-14.61) P<.001 5.25 (4.00-6.91) P<.001

Year of diagnosis

  2010-2013 595 (30.8%) 145 (30.6%)

  2014-2017 642 (33.3%) 171 (36.1%) 1.09 (0.85-1.40) P=.482

  2018-1021 693 (35.9%) 158 (33.3%) 0.94 (0.73-1.20) P=.602

Race

  Whites 1284 (66.5%) 308 (65%)

  Blacks 455 (23.6%) 117 (24.7%) 1.07 (0.84-1.36) P=.567

  Asian or Pacific Islander 178 (9.2%) 46 (9.7%) 1.08 (0.76-1.52) P=.674

  Native American/Alaska Native 13 (0.7%) 3 (0.6%) 0.96 (0.27-3.40) P=.952

Grade

  G1 76 (3.9%) 4 (0.8%)

  G2 91 (4.7%) 10 (2.1%) 2.09 (0.63-6.92) P=.229 1.22 (0.30-4.90) P=.783

  G3 1763 (91.3%) 460 (97%) 4.96 (1.80-13.62) P=.002 3.08 (0.97-9.78) P=.057

T-7th

  T1/T2 1517 (78.6%) 72 (15.2%)

  T3/T4 413 (21.4%) 402 (84.8%) 20.51 (15.60-26.96) P<.001 9.77 (7.24-13.19) P<.001

N-7th

  N0 1473 (76.3%) 255 (53.8%)

  N1 281 (14.6%) 120 (25.3%) 2.47 (1.92-3.17) P<.001 1.19 (0.86-1.64) P=.288

  N2 176 (9.1%) 99 (20.9%) 3.25 (2.46-4.30) P<.001 1.20 (0.84-1.71) P=.306

Marital status

  married 1002 (51.9%) 269 (56.8%)

  others 928 (48.1%) 205 (43.2%) 0.82 (0.67-1.01) P=.059

Median household income

  <50000 126 (6.5%) 39 (8.2%)

  50000-90000 1169 (60.6%) 291 (61.4%) 0.80 (0.55-1.18) P=.263

  >90000 635 (32.9%) 144 (30.4%) 0.73 (0.49-1.10) P=.130

Urban-rural coding

  An urban area with a population of 1 million or more 1137 (58.9%) 290 (61.2%)

  Metropolitan areas with a population of 25-1 million 444 (23%) 102 (21.5%) 0.90 (0.70-1.16) P=.414

  Metropolitan areas with a population of less than 250,000 144 (7.5%) 31 (6.5%) 0.84 (0.56-1.27) P=.416

  Non-metropolitan area and adjacent 120 (6.2%) 31 (6.5%) 1.01 (0.67-1.53) P=.952

  Non-metropolitan area and not adjacent 85 (4.4%) 20 (4.2%) 0.92 (0.56-1.53) P=.754

  Time from diagnosis to treatment (day) 28（15-42） 23（8-36） 0.99 (0.99-1.00) P=.001 1.00 (0.99-1.00) P=.087

  Tumor size 57（40-80） 75（55-100
）

1.01 (1.01-1.02) P<.001 1.01 (1.00-1.01) P<.001

  Age 67（61-73） 65（59-72
）

0.98 (0.97-0.99) P<.001 0.98 (0.96-0.99) P<.001
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(Fig. 8B), yellow indicates risk factors for distant metas-
tasis, and purple highlights protective factors. To further 
elucidate the model’s predictions, we randomly selected 
two groups of UCS patients, one at high risk and another 
at low risk of distant metastasis, with Fig. 8A illustrating 

the low-risk group, exemplified by a patient aged 67 
years with a tumor size of 55 mm, T stage beyond the 
uterus (T3/T4), and negative peritoneal cytology, where 
negative peritoneal cytology served as an important 
protective factor against distant metastasis, and Fig.  8C 

Table 5  Model Performance Index Evaluation

Evaluation of the performance of the training set
Model Threshold Accuracy Sensitivity Specificity Precision F1

Logistic 0.113 0.768 0.914 0.733 0.456 0.609

SVM 0.146 0.779 0.882 0.754 0.468 0.612

GBM 0.189 0.814 0.890 0.796 0.517 0.654

NeuralNetwork 0.239 0.817 0.831 0.813 0.522 0.641

RandomForest 0.500 0.972 0.867 0.998 0.990 0.925

KNN 0.202 0.831 0.975 0.796 0.540 0.695

Adaboost 0.500 0.852 0.622 0.908 0.625 0.624

LightGBM 0.166 0.791 0.905 0.763 0.484 0.631

Test set performance evaluation
Model Threshold Accuracy Sensitivity Specificity Precision F1

Logistic 0.113 0.758 0.872 0.730 0.442 0.587

SVM 0.146 0.779 0.862 0.758 0.467 0.606

GBM 0.189 0.805 0.842 0.796 0.503 0.630

NeuralNetwork 0.239 0.806 0.788 0.810 0.505 0.615

RandomForest 0.500 0.816 0.458 0.903 0.538 0.495

KNN 0.202 0.793 0.833 0.784 0.486 0.613

Adaboost 0.500 0.860 0.606 0.923 0.658 0.631

LightGBM 0.166 0.769 0.808 0.759 0.452 0.580

Fig. 2  ROC-AUC curves for the training set (A) and the test set (B)
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depicting the high-risk group, characterized by a patient 
aged 62 years with a tumor size of 70 mm, T stage beyond 
the uterus (T3/T4), and positive peritoneal cytology, 
which was identified as a critical risk factor for distant 
metastasis.

Discussion
Uterine carcinosarcoma (UCS) is a highly malignant 
gynecological tumor characterized by complex and 
aggressive biology, with a propensity for early and dis-
tant metastases. Currently, there is a lack of reliable 

Fig. 3  Calibration curves for the training set (A) and the test set (B)

Fig. 4  DCA curves for the training set (A) and the test set (B)
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indicators or prediction models to assess the risk of 
distant metastasis in UCS patients. This study success-
fully developed and validated a predictive model that 
incorporates peritoneal cytology features to evaluate 
distant metastasis risk in UCS patients. The model 
exhibited strong discrimination and calibration capa-
bilities, highlighting its potential as a valuable clinical 
tool.

In our study, peritoneal cytology emerged as a critical 
feature influencing distant metastasis in UCS patients. 
This is likely because UCS, being a highly malignant 
tumor, exhibits strong invasive and early metastatic ten-
dencies. When peritoneal cytology results are positive, 
it indicates that tumor cells have acquired the ability to 
breach the basement membrane and enter the abdomi-
nal cavity, suggesting their invasive biological behavior 
and potential for distant metastasis [33, 34]. Compared 
to other invasive diagnostic methods such as laparo-
scopic biopsy, peritoneal cytology offers a relatively 
non-invasive approach to rapidly and safely obtain cyto-
logical results, thereby minimizing patient discomfort 
and complications. Unlike imaging examinations, which 
can be subjective and dependent on the expertise of 
the imaging physician, equipment quality, and the size 
of metastatic tumors. Peritoneal cytology results are 
typically included in routine pathology reports, provid-
ing easily accessible and highly standardized data. This 
reliable data foundation is crucial for constructing and 
validating predictive models. Additionally, the appli-
cation of genetic analysis in peritoneal cytology holds 
significant promise. Advanced technologies such as 

high-throughput sequencing, liquid biopsy, and multi-
omics integration offer more detailed and comprehen-
sive information compared to traditional pathology 
[35]. These innovations are expected to enhance the 
prediction of distant metastasis and improve clinical 
management outcomes, while also opening new avenues 
for genetic research and personalized medicine.

In our current study, the results also demonstrate that 
T stage significantly contributes to distant metastasis in 
UCS patients. Specifically, diagnoses of T3 or T4 stages 
indicate extensive local invasion beyond the uterus, 
often involving lymphatic and blood vessels [36]. This 
facilitates tumor cells entering the circulation, thereby 
promoting distant metastasis. Additionally, our results 
show a positive correlation between tumor size and dis-
tant metastasis risk in UCS patients [37]. Larger tumors 
tend to exhibit higher cell proliferation rates and greater 
aggressiveness, [38] increasing the likelihood of local 
and distant spread. The hypoxic environment within 
growing tumors may activate pro-metastatic signaling 
pathways, [39] further enhancing metastatic potential. 
These findings underscore the need for more aggres-
sive evaluation and management strategies for high-risk 
patients, including wider surgical resection and postop-
erative adjuvant treatments.Interestingly, we observed 
an inverse but weak relationship between age and dis-
tant metastasis in UCS patients. In certain specific 
tumor types,younger patients’ tumors exhibited unique 
biological properties [40–42] such as higher prolifera-
tion rates, greater invasiveness, and metastatic ability, 
[43, 44] potentially due to specific gene mutations or 

Fig. 5  Ranking of feature importance for logistic regression model (A) and GBM model (B)
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Fig. 6  Confusion matrices for logistic regression models (A: training set, B: test set) and GBM models (C: training set, D: test set)

Table 6  Comparison of before and after processing of data imbalances

GBM ROC-AUC​ Threshold Accuracy Sensitivity Specificity Precision F1

No treatment Train 0.906 0.189 0.814 0.89 0.796 0.517 0.654

Test 0.874 0.189 0.805 0.842 0.796 0.503 0.63

Resampling Train 0.927 0.529 0.859 0.875 0.844 0.848 0.861

Test 0.872 0.529 0.825 0.768 0.839 0.54 0.634

Weighted Train 0.911 0.525 0.829 0.88 0.816 0.54 0.669

Test 0.871 0.525 0.81 0.818 0.808 0.511 0.629
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regulatory mechanisms [45]. This suggests that molecu-
lar typing distribution and associated biological behav-
iors may vary with age, highlighting the importance of 
understanding age-related differences in UCS biology. 
The 2023 FIGO update on endometrial cancer staging 
and molecular typing reflects deeper insights into the 
complexity and potential biological behavior of these 
tumors [46]. Further research is needed to explore age-
related biological differences and their implications for 
clinical management.

In our current study, some limitations must be 
acknowledged. First, this is a retrospective analysis that 
poses challenges such as data quality issues, information 
bias and selection bias, so future studies should adopt a 
prospective design to overcome these limitations and 
provide more reliable data support. Second, the perfor-
mance of our machine learning model may be affected by 
geographical and hospital differences, and patient char-
acteristics and treatment patterns may vary significantly 
between regions and medical institutions. To ensure 
the robustness and generalization ability of the model, 
we need more institutions to participate in the external 
validation. To this end, in follow-up studies, we plan to 

incorporate a more diverse and broader multicenter 
dataset for validation and testing of models, aiming to 
address potential variations in model performance across 
different populations and healthcare settings. In addition, 
it is an important direction for future research to explore 
the mechanism of occurrence and development through 
peritoneal cytology examination combined with genom-
ics and proteomics, and to look for more specific and 
sensitive predictors.

In conclusion, based on the large-scale multicenter 
data set, our prediction model provides new ideas and 
technical support for distant metastasis prediction of 
USC patients. In practice, the prediction results of this 
model can help develop personalized follow-up plan, 
especially for those patients predicted to be at high 
risk of metastasis, suggesting more frequent and tar-
geted monitoring measures to ensure early detection of 
potential problems and timely intervention treatment. 
This not only improves the quality of life of patients, but 
also enables the more reasonable allocation of medical 
resources, and realizes the maximum efficiency of medi-
cal services.

Fig. 7  Nomogram plot of a logistic regression model
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Conclusion
This study introduces the first effective tool for predict-
ing distant metastasis in uterine carcinosarcoma patients 
by integrating peritoneal cytology features into model 
construction. It aids in early identification of high-risk 
patients, enhancing follow-up and monitoring during 
tumor development, and supports the optimization of 
personalized treatment strategies.
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