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Abstract 

Background  Deep learning(DL) models can improve significantly discrimination of lymph node metastasis(LNM) 
of pancreatic ductal adenocarcinoma(PDAC), but have not been systematically assessed.

Purpose  To develop and test a transformer model utilizing dual-energy computed tomography (DECT) for predict-
ing LNM in patients with PDAC.

Materials and methods  This retrospective study examined patients who had undergone surgical resection and had 
pathologically confirmed PDAC, with DECT performed between August 2016 and October 2022. Six predictive 
models were constructed: a DECT report model, a clinical model, 100 keV DL model, 150 keV DL model, a combined 
100 + 150 keV DL model, and a model that integrated clinical information with DL-derived signatures. Multivariable 
logistic regression analysis was employed to develop the integrated model. The efficacy of these models was assessed 
by comparing their areas under the receiver operating characteristic curve (AUC) using the Delong test. Survival 
analysis was conducted using Kaplan-Meier curves.

Results  In brief, 223 patients (mean age, 57 years ± 11 standard deviation; 93 men) were evaluated. All patients were 
divided into training (n = 160) and test (n = 63) sets. Patients with LNM accounted for 96 of the 223 patients (43%). In 
the test set, the integrated model, which integrated DECT parameters such as IC and Z, CA- 199 levels, DECT reports, 
and DL signatures, demonstrated the highest performance in predicting LNM, with an AUC of 0.93. In contrast, 
the radiologists’assessment and the clinical model yielded AUCs of 0.60 and 0.62, respectively. The integrated model-
predicted positive LNM was associated with worse overall survival (hazard ratio, 1.75; 95% confidence interval: 1.22 
- 2.83; P =.023).

Conclusion  A transformer-based model outperformed radiologists and clinical model for prediction of LNM at DECT 
in patients with PDAC.
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Key points 

• An integrated nomogram incorporating dual-energy computed tomography (DECT) parameters such as iodine con-
centration (IC) and effective atomic number (Z), carbohydrate antigen- 199 levels, DECT imaging reports, and deep 
learning signatures demonstrated superior predictive accuracy for lymph node metastasis (LNM) in patients with pan-
creatic ductal adenocarcinoma (PDAC), achieving an area under the receiver operating characteristic curve (AUC) 
of 0.93 in the test set.

• This nomogram significantly outperformed both the radiologists’reports and the clinical model in predicting LNM 
in PDAC cases.

Keywords  Lymph node metastasis, Pancreatic ductal adenocarcinoma, Deep learning, Dual-energy computed 
tomography, Progression-free survival

Summary
A nomogram based on dual-energy computed tomog-
raphy, utilizing a transformer model, significantly out-
performed both radiologists and clinical models in 
predicting lymph node metastasis in patients with pan-
creatic ductal adenocarcinoma.

Introduction
By 2030 years, as the most common pancreatic malignant 
tumor, pancreatic ductal adenocarcinoma (PDAC) may 
become the second leading cause of cancer mortality in 
the United States [1, 2]. To date, increasingly advanced 
surgical protocols and chemotherapeutic regimens were 
used to PDAC patients, but their final outcomes remain 
dismal with less than 15% of 5-years survival rate [3, 4]. 
Lymph node metastasis (LNM) plays a crucially impor-
tant role in patients with PDAC underwent R0 resection. 
Therefore, international guidelines (e.g. the European 
Society for Medical Oncology [ESMO] and national 
Comprehensive Cancer Network [NCCN], etc.) recom-
mended neoadjuvant treatment (NAT) to the LNM posi-
tive population, being contributed to improve long-term 
survival after surgery [5–7].

Although the pathological result obtained preop-
eratively from puncture biopsy is still used as the gold 
standard in clinical practice, it is limited by the invasive 
nature and the possibility of severe damage to the com-
plex pancreatic glandular region. High-quality, multi-
slice spiral computed tomography (CT) is the main 
imaging examination for PDAC, but it faced enormous 
challenge to distinguish between metastasis and inflam-
matory reactions of an enlarged LN. A meta-analysis 
reported that using CT to distinguish LNM of PDAC 
provided a low performance with 25% sensitivity and 28% 
accuracy [8–10]. To enhance the spatial contrast of the 
pancreatic region, dual-energy computed tomography 
(DECT) has been developed, involving the acquisition of 
CT attenuation data at two energy levels to enlarge spa-
tial resolution between soft tissues [11–13]. Moreover, 

multi-parameters of DECT including CT value derived 
from virtual monoenergetic image (VMI) 40 keV and 70 
keV, K value, electron cloud density (Rho), and effective 
atomic number (Z), etc. both help radiologists identifying 
the occupying lesions.

Previously, our team have reported that DECT model 
based on ResNet18 algorithm could identify precisely 
LNM before surgery, providing an outstanding prog-
nostic stratification of PDAC patients [14]. Notably, 
Vaswani et  al. report that a transformer architecture as 
a special DL model that primarily designed for sequence-
to-sequence tasks based on a self-attention mechanism 
to capture dependencies between input and output ele-
ments [15], has been used increasingly to predict onco-
logical outcomes. For example, Wentao Wang et  al. 
reported that using transformer-based network for pre-
diction of microvascular invasion of HCC patients [16]. 
But there is currently no developed transformer model 
for prediction of LNM in patients with PDAC.

Therefore, the aim of our study was to develop and test 
a transformer-based model based on DECT to distin-
guish LNM of PDAC. Our findings will give an accurate 
and non-invasive method to adjust therapeutic schemes 
for PDAC.

Materials and methods
This retrospective study complied with the Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis (TRIPOD) guideline [17] 
and obtained approval of the institutional review board 
(B2019 - 012–01) following the principles of the 1975 
Helsinki Declaration. All written informed consent was 
waived due to its retrospective nature.

Study sets
Between August 2016 and October 2022, 1,258 con-
secutive patients with PDAC underwent surgery with 
standard regional lymph node dissection were iden-
tified from two high-volume institutions according 
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to the following eligibility criteria: (i) the nature of 
tumors and adjacent enlarged lymph nodes were path-
ologically confirmed; (ii) preoperatively diagnosed as 
respectable complied with the American Joint Com-
mittee on Cancer TNM staging, and (iii) all PDAC 
patients received DECT scanning within two weeks 
before surgery. Patients were excluded if they: (i) had 
any malignancies other than PDAC; (ii) missing DECT 
imaging for reliable assessment; and (iii) lost follow-
up. NAT, including chemoradiation therapy or cyto-
toxic chemotherapy, was executed in some patients. 
Figure  1. shows the enrolment pathway of PDAC 
patients. Finally, a total of 223 patients were enrolled 
at two tertiary referral hospitals. We selected 160 eli-
gible patients in Qingdao Central Hospital into the 
training set and other 63 in Air Force Medical Center 
were assigned into test set, respectively.

The histologic examination of tumor specimens was 
performed by two pathologists (W.W, 10 years’ experi-
ence and L.W.L.,10 years’ experience) through serially 
examining LNM.

DECT Image protocol
All PDAC patients were scanned using a third-genera-
tion dual-source DECT machine Siemens dual-source 
CT (SOMATOM Force CT, SIEMENS, Germany), and 
the scan range was from the top of the diaphragm to the 
bifurcation of the abdominal aorta. We used the software 
Synovia VB10B for the multi-parameter analysis of the 
energy spectrum. The DECT technique and postprocess-
ing are shown in Supplementary Materials E1.1–1.2. 
Dual-energy parameters were measured by placing a 
region of interest (ROI) of tumor and pancreatic region. 
The collection and definition of clinical variables, DECT 
parameters and pathological findings were shown in Sup-
plementary Materials E1.3.

Follow‑up
Per patient who received surgery were regularly followed 
up using serum carbohydrate antigen (CA)− 199 and 
contrast enhanced imaging after 1 month and every 3–6 
months thereafter. Two fellowship-trained abdominal 
radiologists were assigned into assessment in pancreatic 

Fig. 1  Flowchart depicting the enrollment pathway of patients with Pancreatic Ductal Adenocarcinoma (PDAC) who underwent surgical 
intervention. Abbreviations: PDAC = Pancreatic Ductal Adenocarcinoma
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imaging and a senior radiologist participated in the final 
decision. Disease-free survival (PFS) was defined as the 
time from the initial surgery to first-documented tumor 
recurrence (unequivocal radiological and/or histologic 
identification of PDAC) or all-cause death. Overall sur-
vival (OS) was defined as the time from the initial surgery 
to death of any cause.

Transformer model for prediction of LN metastasis
The flowchart of transformer model construction was 
shown in Fig.  2. We selected the ROI containing tar-
geted tumor, pancreatic glands and adjacent areas from 
venous phase of the two types of DECT images includ-
ing 100 keV, and 150 keV. Then, the size of each ROI 
was modified and normalized into 224 × 224 pixels. An 
in-house signatures extraction software with algorithms 
implemented in Visual Studio Code was used for DECT 
imaging processing. Three slices in ROI of DECT 100 
keV, and 150 keV per patients were input synchronously 
transformer-based model. Detailed information on the 
mechanisms of transformer-based models, bidirectional 
multimodal attention and self-attention can be found in 
supplementary Materials E1.4 and experiments. To con-
firm the predictive performance of transformer-based 
model, we compared it with traditional CNNs [18].

In addition, we used multivariate logistic regression 
with forward stepwise for analysis of clinical data includ-
ing DECT parameters, DECT reports, demographics 
data and laboratory findings.

Statistical analysis
The transformer-based model generated risk scores for 
LNM and low- and high-risk groups were distinguished 
using X-title soft. We compared survival outcomes 
between two risk groups by the Kaplan–Meier method 
and compared with the log-rank test. The hazard ratios 
(HRs) to compare survival between the two groups, with 
95% confidence intervals (CIs) used to evaluate the varia-
tion around the estimated risk of events.

Uni- and multivariable regression analyses were con-
ducted to identify independent clinical risk factors for 
LNM. Then, we will build a nomogram that integrated 
clinical information, DECT parameters and signatures. 
Although, we didn’t perform sample-size calculation 
beforehand, according to the “ten events per variable"rule 
of thumb (LNM-positive, n = 65) in the nomogram, 
implying sufficient accuracy of the regression estimates. 
The clinical utility of the nomogram was evaluated with 
decision curve analysis (DCA).

The discrimination of different models was meas-
ured with the concordance area under the receiver 

Fig. 2  Schematic representation of the workflow for the ViT (Vision Transformer) model, which utilizes Dual-energy Computed Tomography 
(DECT) to assess Lymph Node Metastases (LNM) in patients diagnosed with PDAC. A Data collect; B Data input the ViT (Vision Transformer) model 
and output LNM; C-D The computational architecture diagram of the ViT model. Abbreviations: DECT = Dual-energy Computed Tomography; LNM 
= Lymph Node Metastases; PDAC = Pancreatic Ductal Adenocarcinoma
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operating characteristic curve (AUC) and compared by 
using Delong test. To explain DL models, the gradient-
weighted class activation mapping (GRAD-CAM) was 
used to generate a rough location heat map highlighting 
the entry area of the classification target [19].

Statistical analysis was performed using SPSS version 
23.0 (IBM Corp., NY, USA) and the “RMS package” using 
R software version 4.3.0 (http://​www.r-​proje​ct.​org/). All 
tests of significance were two-sided, and P < 0.05 were 
considered statistically significant.

Results
Patient baseline characteristics
Table 1 outlined the PDAC patients’ baseline characteris-
tics stratified by LN status at two sets. All variables’ base-
line characteristics demonstrated a superior balance and 
consistency in the training set (all, P > 0.05). Notably, an 
older age was found to be more prevalent in the LNM- 
positive group than that in the LNM- negative group 
(P = 0.015) in the test set. Moreover, a higher tumor 
stages were shown in the LNM- positive group (T stage, 
P < 0.001; N stage P = 0.011). The LNM rates were 40.6% 
(65/160) in the training set, and 49.2% (31/63) in the 
test set, respectively, showing no significant difference 
between two sets (P = 0.244). 17.5% (28/160) patients 
received AT in the training set, and 14.3% (9/63) in the 
test set, respectively, showing no significant difference 
between two sets (P = 0.561).

The DECT parameters comparison between LNM‑positive 
and negative group
The DECT parameters were compared between the 
LNM-positive group and the LNM-negative group in two 
sets and outlined in Table  2. Except for DECT parame-
ters including IC, DIC and Z obtained from tumor region 
(both, P < 0.001 and 0.029) with statistical differences 
between two groups in the training set, others have no 
significant difference. Similar results are also found in 
the test set (both, P < 0.001 and 0.015). DECT parameters 
distribution and correlation were shown in Figure S1.

Multivariate cox regression analysis for LNM
Multivariate logistic regression of forward stepwise 
method found four independent risk factors signifi-
cantly associated with LNM in the training set (Table 3), 
including tumor size (OR: 0.858; 95% CI: 0.766, 0.961; 
P = 0.008), DECT-reported LN status (OR: 2.535; 95% 
CI: 1.800, 3.570; P < 0.001), CA- 199 (OR: 1.002; 95% 
CI: 1.000, 1.004; P = 0.014), and glucose (OR: 1.112; 95% 
CI:1.046, 1.148; P = 0.001). Then, we added the DL signa-
tures into these clinical variables and multivariate logistic 
regression of forward stepwise method showed DL signa-
tures, high-risk score (OR:7.082; 95 CI %: 4.785–14.118; 

P < 0.001), DECT-reported LN status (OR: 3.131; 95% 
CI: 2.142, 4.523; P < 0.001), CA- 199 (OR: 1.004; 95% 
CI: 1.002, 1.006; P < 0.001), IC (OR: 0.213; 95% CI:0.120, 
0.476; P < 0.001), and Z (OR: 5.483; 95% CI: 2.204, 14.238; 
P = 0.001).

The development of transformer‑based DL model
The AUC, SENS, SPEC, PPV, NPV and F1 score of DECT 
reports, clinical and each Vision Transformer (ViT) 
model based on DECT are outlined in Table 4. The ViT 
model’s performance outperforming other CNNs model 
including Resnet50, InceptionV3, VGG16, and Mobile 
Net was found (Table S1). The ICC of DECT reports by 
two radiologists were 0.84 in the training set and 0.80 in 
the test set, providing a common AUC value (0.62, 95% 
CI: 0.32–0.73) in the training set and (0.60, 95%CI:0.45–
0.73) in the test set, respectively. Clinical model that inte-
grates DECT parameters and clinical variables slightly 
improved AUC than DECT reports with no statistical 
significance. Three transformer models based on DECT 
images including 100 keV model, 150 keV model, and 100 
+ 150 keV were compared. The results found that 100 
+ 150 keV DECT models yield the optimal performance 
among three models, with AUC: 0.94 (95% CI: 0.90–0.96) 
in the training set and 0.91 (95% CI: 0.75–1.00) in the test 
set.

Further, an integrated model was built based on these 
independent factors to predict LNM. Patients who 
received one individualized grade and higher total points 
of the assigned number had a LNM risk. The integrated 
mode yields the best performance (0.94, 95% CI: 0.90–
0.98 in the training set and 0.93, 95% CI: 0.84–1.00 in the 
test set) and showed a significantly better performance 
than the DECT reports, given by two radiologists, the 
model based on clinical variables, 100 keV model, and 
150 keV model, in the test set (both, P < 0.001) accord-
ing to the DeLong test. The AUC comparison between 
DECT-reports, clinical model, 100 keV model, 150 keV 
model,100 + 150 keV model and integrated mode were 
shown in two sets (Fig. 3).

Interpretation for transformer‑based DL model
The ViT model–computed LNM risk score distribu-
tion of the test sets as well as four examples gradient-
weighted class activation mapping of the original DECT 
images are shown in Fig. 4, which demonstrates a regu-
lar phenomenon with similar appearance in 100 keV and 
150 keV DECT images. The density of red areas in the 
LNM-positive patients was higher than that in the LNM-
negative patients. In addition, ViT models yield the most 
attentions (red areas) to pancreatic tissues surrounding 
the target tumor area instead of the tumor-self. This per-
formance indicated that ViT models can visually display 

http://www.r-project.org/
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Table 1  Baseline characteristics comparison between negative and positive for LNM in the primary and test sets

Variable Primary dataset (n = 160) P value Test dataset (n = 63) P value

Negative for LNM
(n = 95)

Positive for LNM
(n = 65)

Negative for LNM
(n = 32)

Positive for LNM
(n = 31)

Demographics
Age (y), mean ± SD 57.4 ± 13.6 58.2 ± 10.3 0.689 55.4 ± 7.9 59.5 ± 8.8 0.015
Gender 0.790 0.513

  Female 55 (57.9) 39 (59.6) 17 (53.1) 19 (61.3)

  Male 40 (42.1) 26 (40.4) 15 (46.9) 12 (38.7)

Marital status 0.809 0.681

  Unmarried 19 (20.0) 12 (18.5) 4 (12.5) 5 (16.1)

  Married 76 (80.0) 53 (81.5) 28 (87.5) 26 (83.9)

Residence 0.753 0.674

  Rural 40 (42.1) 29 (44.6) 13 (40.6) 11 (35.5)

  Urban 55 (57.9) 36 (55.4) 19 (59.4) 20 (64.5)

Education 0.620 0.208

  Low 17 (18.0) 11 (16.9) 7 (19.4) 6 (22.2)

  Medium 68 (71.6) 43 (66.2) 19 (63.9) 18 (59.3)

  High 10 (10.4) 7 (10.9) 6 (16.7) 7 (18.5)

KPS 0.388 1.000

  ≤ 80 23 (24.2) 12 (18.5) 4 (3.6) 3 (3.4)

  > 80 72 (75.8) 53 (81.5) 28 (96.4) 28 (96.6)

Comorbidities 0.661 0.355

  Absence 81 (78.7) 57 (71.2) 31 (96.9) 28 (96.6)

  Presence 14 (21.3) 8 (28.8) 1 (3.1) 3 (3.4)

Histologic grade 0.489 0.378

  Well differentiated 68 (75.2) 48 (78.9) 17 (36.9) 15 (12.5)

  Moderately differentiated 12 (16.5) 7 (13.5) 11 (57.9) 14 (75.0)

  Poorly differentiated 15 (9.8) 10 (7.7) 4 (31.6) 2 (12.5)

CT report
Tumor size (cm), mean ± SD 3.4 ± 1.8 3.3 ± 1.1 0.637 3.3 ± 1.6 3.1 ± 1.0 0.550

Tumor number 1.000 1.000

  Single 93 (96.7) 65 (100) 31 (100) 31 (100)

  Multiple 2 (3.3) 0 (0) 1 (0) 0 (0)

Location 0.958 0.294

  Head 61 (64.2) 40 (61.6) 22 (68.8) 22 (71.0)

  Neck 10 (10.5) 6 (9.2) 3 (9.3) 2 (6.4)

  Body 7 (7.4) 6 (9.2) 4 (12.5) 4 (12.8)

  Tail 17 (17.9) 13 (20.0) 3 (9.3) 3 (9.7)

T stage 0.002  < 0.001

  cTa-cT2 50 (77.0) 18 (2.0) 26 (81.3) 10 (32.3)

  cT3-cT4 45 (23.0) 47 (75.0) 6 (18.7) 21 (67.7)

LN status 0.003 0.011

  cN1 - 3 21 (30.6) 29 (59.6) 5 (15.6) 14 (46.2)

  cN0 74 (69.4) 36 (40.4) 27 (74.4) 17 (53.8)

Metastasis 0.939 1.000

  cM1 7(9.8) 5 (1.9) 3 (9.3) 2 (9.7)

  cM0 88 (90.2) 60 (98.1) 29 (90.7) 29 (90.3)

Laboratory findings
Median CA- 199 (U/L)a 409.2 (22.6, 18,485.2) 983.5(42.5, 22,378.8)  < 0.001 248.4 (6.6, 2423.5) 489.8 (7.4, 908.6)  < 0.001

Median CEA9 (U/L)a 4.8 (1.6, 83.3) 16.2 (5.4, 78.2) 0.089 2.6 (0.9, 66.9) 10.9 (3.9, 75.8)  < 0.001
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Table 1  (continued)

Variable Primary dataset (n = 160) P value Test dataset (n = 63) P value

Negative for LNM
(n = 95)

Positive for LNM
(n = 65)

Negative for LNM
(n = 32)

Positive for LNM
(n = 31)

Glucose, mean ± SD (mmol/L)a 7.1 ± 2.9 7.1 ± 2.5 0.970 7.4 ± 2.2 7.6 ± 2.0 0.874

Median GGT (U/L)a 280.3 (32.2, 2343.9) 221.1(12.5, 2126.7) 0.361 193.1 (17.0, 1847.2) 385.6 (22.3, 683.2) 0.415

Median Total bilirubin (μmol/L)a 73.5 (22.1, 334.2) 76.6 (16.3, 290.2) 0.804 44.7 (16.0, 424.2) 62.2 (15.1, 185.5) 0.256

NAT 0.924 0.906

  Absence 78(82.1) 54 (83.1) 27 (84.3) 27 (87.1)

  Presence 17 (17.9) 11(16.9) 5 (15.7) 4 (12.9)

Median progression-free survival, monthsa 6.5 (2.1, 9.2) 4.6 (1.2, 8.5)  < 0.001 5.7 (1.8, 8.2) 4.3 (1.0, 7.5)  < 0.001

Median overall survival, monthsa 11.5 (4.5, 17.4) 8.2 (3.3, 15.4)  < 0.001 10.8 (5.8, 18.4) 7.3 (4.2, 17.9)  < 0.001

Data are number of patients; data in parentheses are percentage unless otherwise indicated

Abbreviation: LNM lymph node metastases, CT computed tomography, KPS karnofsky performance score, CA 19–9 carbohydrate antigen 19–9, CEA carcino-embryonic 
antigen, GGT  γ-glutamyl transpeptadase, NAT neoadjuvant treatment
a Data in parentheses are interquartile range

Table 2  DECT Parameter Comparison Between Negative and Positive for LNM in the Primary and Test sets

Abbreviation: ROI: region of interest; VMI: virtual monoenergetic images; Z: atomic number; IC: iodine content; Rho: electron cloud density; DEI: dual-engrgy index
a Scanning in venous phase.K value = (HU40keV-HU70keV)/30

DECT parameters Traning dataset (n = 160) P value Test dataset (n = 63) P value

Negative for LNM
(n = 95)

Positive for LNM 
(n = 65)

Negative for LNM
(n = 32)

Positive for LNM
(n = 31)

Tumor regiona

  ROI cm2 0.50 ± 0.10 0.50 ± 0.11 0.908 0.50 ± 0.14 0.50 ± 0.15 0.772

  100 keV CT value (Hu) 97.8 ± 36.1 99.6 ± 33.4 0.782 99.2 ± 21.3 108.6 ± 23.5 0.789

  150 keV CT value (Hu) 62.7 ± 17.5 57.8 ± 14.0 0.589 61.3 ± 14.6 62.9 ± 11.8 0.672

  VMI 40 keV (Hu) 223.4 ± 92.1 226.5 ± 102.0 0.920 277.6 ± 48.9 266.8 ± 32.6 0.578

  VMI 70 keV(Hu) 91.6 ± 21.6 90.0 ± 21.2 0.982 90.5 ± 22.3 99.6 ± 310 0.514

  K value 4.4 ± 0.5 4.5 ± 0.9 0.955 4.8 ± 0.7 4.1 ± 0.5 0.674

  IC (mg/ml) 2.3 ± 0.8 4.2 ± 1.1  < 0.001 2.2 ± 0.9 4.2 ± 0.4  < 0.001
  NIC (%) 32.1 ± 6.3 45.2 ± 9.6  < 0.001 32.9 ± 13.7 43.8 ± 13.7  < 0.001
  Rho 37.0 ± 6.2 48.4 ± 8.5 0.356 32.9 ± 7.2 36.7 ± 9.9 0.220

  Z 8.2 ± 0.5 8.6 ± 0.4 0.029 8.4 ± 0.3 8.7 ± 0.4 0.045
  DEI 0.017 ± 0.002 0.018 ± 0.004 0.854 0.017 ± 0.005 0.018 ± 0.006 0.885

Pancreatic regiona

  ROI cm2 0.50 ± 0.10 0.50 ± 0.11 0.911 0.50 ± 0.12 0.50 ± 0.14 0.788

  100 keV CT value (Hu) 96.4 ± 38.2 93.6 ± 23.4 0.667 82.7 ± 19.0 112.0 ± 41.3 0.612

  150 keV CT value (Hu) 56.7 ± 18.1 57.7 ± 13.1 0.740 57.7 ± 12.3 61.9 ± 14.2 0.212

  VMI 40 keV (Hu) 223.0 ± 103.6 213.2 ± 79.2 0.575 176.7 ± 48.9 218.3 ± 55.6 0.420

  VMI 70 keV (Hu) 91.3 ± 34.0 89.2 ± 24.0 0.721 81.8 ± 25.5 104.3 ± 36.4 0.050

  K value 4.4 ± 2.4 4.1 ± 1.7 0.523 5.0 ± 2.0 6.1 ± 1.9 0.263

  IC (mg/ml) 2.4 ± 1.3 2.3 ± 1.0 0.599 2.7 ± 0.8 2.7 ± 0.4 0.090

  NIC (%) 32.9 ± 13.7 33.8 ± 13.7 0.716 32.9 ± 13.7 33.8 ± 13.7 0.716

  Rho 34.8 ± 9.8 36.4 ± 8.1 0.356 34.8 ± 9.8 36.4 ± 8.1 0.056

  Z 8.6 ± 0.3 8.6 ± 0.4 0.975 8.2 ± 0.5 77 ± 0.8 0.271

  DEI 0.018 ± 0.009 0.016 ± 0.007 0.567 0.014 ± 0.005 0.020 ± 0.017 0.125
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Table 3  Stepwise Multivariable Logistic Regression Analysis for Factors Associated with Odds of LNM of PDAC in the Training set

These analyses were performed using the traning cohort (n = 160). Numbers in parentheses are 95% CIs

Abbreviation: PDAC pancreatic ductal adenocarcinoma, LNM lymph node metastases, DECT dual-engrgy computed tomography, VMI virtual monoenergetic images, 
Z atomic number, IC iodine content, Rho electron cloud density, DEI dual-engrgy index, NA 

Variable Clinical-DECT parameters Clinical-DECT parameters-DL signatures

β Wald OR (95% CI) P value β Wald OR (95% CI) P value

Tumor size (cm), (per 0.1 increase) -.153 .058 .858 (.766-.961) .008

Glucose (mmol/L), (per 0.1 increase) .106 .031 1.112 (1.046–1.148) .001

CA- 199 (μmol/L), (per 0.1 increase) .002 .001 1.002 (1.000–1.004) .014 .004 .001 1.004 (1.002–1.006)  <.001

DECT report of LNM, presence .930 .175 2.535 (1.800–3.570)  <.001 1.136 .191 3.131 (2.142–4.523)  <.001

DL signatures, high-risk score 2.236 .329 7.082 (4.785–14.118)  <.001

100 keV CT value (Hu), (per 0.1 increase)

150 keV CT value (Hu), (per 0.1 increase)

VMI 40 keV (Hu), (per 0.1 increase)

VMI 70 keV(Hu), (per 0.1 increase)

K value, (per 0.1 increase)

IC (mg/ml), (per 0.1 increase) − 1.546 .294 .213 (.120-.476)  <.001

NIC (%), (per 0.1 increase) NA NA

Rho, (per 0.1 increase) NA NA

Z, (per 0.1 increase) 1.702 .509 5.483 (2.204–14.238) .001

DEI, (per 0.1 increase) NA NA

Table 4  The performance comparison of different models

Numbers in parentheses are the 95% confidence interval. The bold values represent the optimal AUC value

AUC​ areas under receiver operating characteristic curve, ACC​ accuracy, SENS sensitivity, SPEC specificity, PPV positive predictive value, NPV negative predictive value
# Comparison between DL based nomogram and other models using significant level of Delong test for methods 

Models Cohorts AUC​ ACC​ SENS SPEC PPV NPV

DECT reports Training 0.62
(0.32,0.73)

0.64
(045,0.78)

0.70
(0.33,0.83)

0.59
(0.40,0.70)

0.61
(0.49,0.73)

0.66
(0.48,0.75)

Test 0.60
(0.45,0.73)

0.60
(0.50,0.67)

0.67
(0.49,0.82)

0.53
(0.47,0.77)

0.60
(0.41,0.75)

0.50
(0.27,0.75)

Clinical Training 0.66
(0.32,0.73)

0.62
(0.27,0.58)

0.68
(0.53,0.83)

0.59
(0.40,0.70)

0.61
(0.49,0.73)

0.56
(0.58,0.75)

Test 0.63
(0.55,0.73)

0.61
(0.50,0.75)

0.57
(0.49,0.72)

0.53
(0.47,0.77)

0.55
(0.41,0.75)

0.52
(0.47,0.75)

100 keV ViT Training 0.94
(0.84,1.00)

0.87
(0.73,0.97)

0.79
(0.56,1.0)

0.94
(0.78,1.00)

0.92
(0.73,1.00)

0.83
(0.64,1.00)

Test 0.73
(0.54,0.92)

0.70
(0.55,0.85)

0.87
(0.67,1.0)

0.56
(0.33,0.78)

0.62
(0.41,0.81)

0.83
(0.60,1.00)

150 keV ViT Training 0.95
(0.90,0.97)

0.88
(0.82,0.93)

0.87
(0.78,0.95)

0.88
(0.80,0.95)

0.87
(0.77,0.95)

0.88
(0.79,0.95)

Test 0.84
(0.70,0.96)

0.73
(0.57,0.87)

0.71
(0.47,0.93)

0.75
(0.50,0.94)

0.71
(0.50,0.93)

0.75
(0.53,0.94)

100 + 150 keV ViT Training 0.94
(0.90.0.96)

0.89
(0.84,0.94)

0.90
(0.82,0.97)

0.88
(0.80,0.95)

0.87
(0.79,0.95)

0.91
(0.84,0.97)

Test 0.91
(0.75,1.00)

0.90
(0.77,1.00)

0.86
(0.67,1.00)

0.94
(0.79,1.00)

0.92
(0.75,1.00)

0.88
(0.71,1.00)

ViT + clinical model Training 0.94
(0.90,0.98)

0.90
(0.84,0.95)

0.88
(0.80,0.96)

0.91
(0.83,0.97)

0.90
(0.82,0.97)

0.90
(0.82,0.97)

Test 0.93
(0.84,1.00)

0.83
(0.70,0.97)

0.86
(0.67,1.00)

0.81
(0.62,1.00)

0.80
(0.58,1.00)

0.87
(0.67,1.00)

Cohorts DECT reports Clinical 100 keV 150 keV 100 + 150 keV
Test#  < 0.001  < 0.001  < 0.001  < 0.001 0.265
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Fig. 3  A nomogram calibrated by the coefficients of various risk factors to forecast lymph node metastases (LNM). The nomogram is defined 
by the equation: Y = − 8.796 + 3.023 × Z + 1.528 × CA- 199 + 2.027 × IC + 4.561 × CT-reports + 6.961 × Risk scores, where Y represents the probability 
of LNM in PDAC patients. The calibration curve illustrates the alignment of the model’s predictions with the actual observed probabilities 
in both the (B) training set and (C) test set. The decision curve analysis (DCA) revealed that the nomogram exhibited superior net benefit 
across a spectrum of reasonable threshold probabilities in both the training (D) and test set (E). Abbreviations: LNM = Lymph Node Metastases; 
PDAC = Pancreatic Ductal Adenocarcinoma; DCA = Decision Curve Analysis

Fig. 4  Illustrates the comparison of receiver operating characteristic (ROC) curves for various models predicting LNM in PDAC, across both the 
training set (A) and the test set (B). Abbreviations: LNM = Lymph Node Metastases; PDAC = Pancreatic Ductal Adenocarcinoma
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the areas where lymph nodes are prone to metastasis and 
to distinguish out LNM status, even if above-mentioned 
areas did not attract the attention of radiation experts. 
Notably, ViT models sought different adjacent areas of 
PDAC for the same patient, which explained why they 
provided different predictive performances.

Association between transformer‑predicted lnm status 
and survival
To facilitate the clinical practice of the nomogram, we 
divided PDAC patients into two groups according to the 
LNM risk scores, including a high-risk group and low-
risk group. We identified the cut-off values (22.18) in the 
PC and verified them in the TC. The median follow-up 
duration was 22.5 months (IQR, 14.2–30.8 months) in 

the LNM-negative group and 20.4 months (IQR, 13.7–
28.4 months) in the LNM-positive group. According 
to the cut-off values of LNM risk scores, the 1-, 2- and 
3-years OS were 85.6%, 70.2% and 54.8%, respectively, 
in the low-risk group and the 1-, 2- and 3-years OS were 
55.6%, 31.2% and 24.8%, respectively, in the high-risk 
group, showing significant statistical difference in the 
training set (P < 0.001) (Figs. 5A). Similarly, the cumula-
tive 1-, 2-, and 3-year OS rates among the high-risk and 
low-risk groups were also significant difference in the 
test set (P = 0.023) (Fig.  5B). The 1-, 2- and 3-year PFS 
were 56.5%, 50.2% and 37.5%, respectively, in the low-
risk group, which was better than that in high-risk group 
(53.2%, 12.4% and 12.4%, respectively) in the training set 
(P = 0.016) (Fig. 5C). Similarly, the cumulative 1-, 2-, and 

Fig. 5  provides a visual representation of two PDAC patient examples, displaying dual-energy computed tomography (DECT) imaging at 100 
keV and 150 keV, along with corresponding heat maps. The red regions indicate areas of greater weight, which can be interpreted using the color 
bar on the right. A Depicts a 52-year-old male PDAC patient with LNM, who has a poor prognosis and a median overall survival (OS) of 7.8 months. 
B Shows a 48-year-old female PDAC patient without LNM, who has a favorable prognosis and a median OS of 15.9 months. Abbreviations: LNM 
= Lymph Node Metastases; PDAC = Pancreatic Ductal Adenocarcinoma; OS = Overall Survival; DECT = Dual-energy Computed Tomography
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3-year PFS rates among the high-risk and low-risk groups 
were also significant difference in the test set (P < 0.001) 
(Fig. 5D).

The Subgoup analysis
ViT model–predicted LNM risk was a strong predic-
tor for OS and PFS in different subgroups in two sets 
(Table  S2). Conventional metrics including age, gen-
der, tumor size, CA- 199, and NAT, based on a subset 
of patients with PDAC. Similar survival comparison 
between two risk groups were observed in the above-
mentioned subgroup using forest plots (Figure S2).

Discussion
The integrated model based on ViT algorithm contrib-
uted to help physicians identifying whether there is a 
LNM for PDAC patients and developing correspond-
ing decision-making plans. Previous studies have inves-
tigated various risk identification methods for LNM [9, 
20, 21], but so far, preoperative distinguish of LNM still 
mainly depends on the radiologist’s reports. A low AUC 
value of 0.60 from radiologists’ reports in the test set was 
found in our study. Even if these radiologists used DECT 
parameters to help identify LNM, the predictive perfor-
mance of DECT reports remains struggling to achieve 
significant improvement. Notably, we select the ROIs of 
tumor and pancreas to obtain the DECT parameters, but 
the results found that IC and Z have significant statisti-
cal difference between LNM-positive and negative group, 
indicating only special DECT parameters contributed to 
identifying the LNM based on significant improvement 
of image quality and tumor differentiation.

To date, several studies have assessed preoperatively 
LNM using artificial intelligence (AI) algorithm in PDAC 
patients. For example, Shao et al developed and validated 
an AI model using cropped sub volume centered LN 
instances at CT to identify automatically segmented LNs 
as positive or negative metastasis [22]. The model pro-
vided a well-received AUC value of 0.91 in the training 
set and 0.92 in the validation set, respectively. However, 
the primary limitation of this study was the target tumor 
and LN need to manual sketch to train and extract sig-
natures. This requires a lot of time and effort from radi-
ologists. Another limitation of these similar studies were 
that the radiomics features or signatures extracted from 
ROI using AI model were difficult to achieve consistency 
from one another, indicating a challenge for reproducibil-
ity [23, 24].

Given the high-contrast and multi-parameter charac-
teristics of DECT imaging, we attempted to build ViT 
models using various DECT imaging, including 100 keV, 
150 keV and 100 keV plus 150 keV. We found that the 
signatures synchronously extracted from 100 and 150 

keV DECT imaging and input into the ViT model, so the 
LNM predictive performance of final output is the best 
among three ViT models. This result suggests that the 
signatures extracted from the 100 and 150 keV DECT 
images have complementary information, which can 
help the ViT model improving its ability to distinguish 
LNM. On this basis, two key DECT parameters includ-
ing Z and IC, combined with DECT reports and CA- 199 
as an important PDAC’ biomarker was added into ViT 
100 + 150 keV risk scores to build an integrated model 
for prediction LNM of PDAC. It turns out that the per-
formance of the integrated model was slightly improved 
than that of ViT 100 + 150 keV model. The integrated 
mode demonstrated favorable discrimination in both 
the training set (AUC, 0.94) and the test set (AUC, 0.93), 
outperforming radiologists’ reports, and clinical model 
(Delong test, both, P < 0.001). Further, the PDAC patients 
with LNM identified by the integrated model yielded an 
approximately 50% worse survival who underwent radi-
cal resection, thereby providing important prompt infor-
mation for decision-making support.

We hypothesized that ViT model as the network back-
bone can obtain more DECT information than CNNs 
model [25–27]. Therefore, we conducted a preliminary 
experiment comparing the predictive ability of AI models 
using various DL approaches. It was found that the ViT 
model indeed has better predictive performance than tra-
ditional CNNs. To our knowledge, ViT has not yet been 
widely used in medical image classification, let alone sur-
vival prediction. Previous studies have shown that trans-
former models were used to prognostic prediction of 
patients with rectal cancer based on MRI [28]. The model 
computed risk score was also able to accurately predict 
PFS at 1-, 3-, and 5- years in the validation set. In this 
study, we empirically demonstrated that the pretrained 
ViT can achieve better performance than traditional 
CNNs in terms of survival prediction, such as, predictive 
LNM AUC, 0.93 (ViT) vs. 0.72 (ResNet50); P < 0.001.

To interpret the ViT model, we used Grad CAM to 
visualize the region of LNM with a rough heat map. We 
simultaneously observed the heatmap distribution sta-
tus of DECT images at 100 and 150 keV, and the results 
found that red color weight is mainly distributed in the 
peripheral area of the tumor in the LNM-positive group 
regardless of the location of PDAC tumor. For the same 
patient, the weight and distribution of heat maps in both 
the 100 and 150 keV groups are almost consistent, indi-
cating that the ability of the ViT model to distinguish 
LNM is consistent in both modalities of DECT imag-
ing. Notably, peripheral area of the tumor was more 
worthy of the attention of doctors than the intertumoral 
region, due to cancer cells that metastasize to the lym-
phatic system often spread along this pathway [29, 30]. 
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This common phenomenon revealed the working prin-
ciple of ViT models based on DECT imaging for identify 
LNM. Besides those, the visualization of extracted signa-
tures on 100 and 150 keV DECT imaging directly dem-
onstrated that tumor characteristics in hidden layers and 
indeed suggest the difference between LNM-negative 
and positive group, which was captured by ViT models.

Our results found that PDAC patients stratified into 
high- and low-risk LNM groups using the integrated 
model showed significantly different survival benefit 
including OS and PFS improvement. In addition, we 
found the NAT didn’t interference with the prediction 
results of the integrated model according to the subgroup 
analysis. This ViT based integrated model help surgeons 
to develop a scheme after surgery. Multiple integrational 
guidelines suggest that NAT has been adopted as an 
important adjuvant treatment when enlarged LN around 
the pancreas are highly suspected of metastasis [31, 
32]. Once the nomogram is used to identify LNM, NAT 
should be used in a timely manner.

There are certain limitations in our study. First, the ViT 
based integrated model remains to seem mildly overfitted 
due to the small sample size of this study. More DECT data 
of PDAC should be collected to further confirm the per-
formance and the robustness of the ViT based integrated 
model. Second, we did not collect pathological and gene 
factors for improvement of survival outcomes prediction, 
and the importance of these factors should be investigated 
further. Third, there may have been difficulty in correlat-
ing LNs obtained at surgery with the specific nodes seen at 
preoperative scanning, representing a potential limitation. 
Finally, we did not evaluate the benefit of AT and postop-
erative chemotherapy for patients with PDAC.

In conclusion, the ViT based integrated model that 
integrated clinical information, DECT parameters and 
DL-signatures exhibited outstanding performance in pre-
dicting LNM of PDAC patients. This novel AI model may 
help surgeons for individualized therapeutic decision-
making in PDAC for clinical practice and trials. Further, 
a prospective clinical trial should be designed to obtain 
power and reliable evidences.
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