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Abstract
Background  Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy with poor prognosis. 
Dysregulation of E2F transcription factors (E2Fs), which control cell proliferation and apoptosis, is implicated in HNSCC 
pathogenesis. This study explores HNSCC molecular heterogeneity via E2Fs expression, identifies distinct subtypes, 
and develops a prognostic model that integrates gene expression, immune infiltration, and drug sensitivity.

Methods  We analyzed the TCGA-HNSC dataset (n = 494) and classified samples based on the expression of eight 
E2Fs using ConsensusClusterPlus. The optimal number of clusters (k = 2) was determined with the getOptK() function, 
which assesses cluster stability via internal consistency metrics. Differentially expressed genes between subtypes 
were identified with limma, and functional annotation was performed using Gene Ontology and Kyoto Encyclopedia 
of Genes and Genomes pathway analyses. A prognostic model was constructed using LASSO regression on genes 
significant in univariate Cox analysis and validated in an independent GSE41613 dataset (n = 97). Immune cell 
infiltration was estimated using CIBERSORT, and drug sensitivity predicted via pRRophetic. Confounding factors such 
as HPV and smoking status were not included due to incomplete data.

Results  Two distinct E2F-based subtypes emerged. Cluster 1, characterized by lower E2Fs expression, exhibited 
poorer overall survival (log-rank, p = 0.035) and was enriched in genes related to epidermal development, keratinocyte 
differentiation, and IL-17 signaling. In contrast, Cluster 2 showed higher E2Fs expression, better survival, and 
enrichment in genes associated with DNA replication and repair. Notably, high-risk patients demonstrated increased 
infiltration of M0 and M2 macrophages (p < 0.05), suggesting an immunosuppressive tumor microenvironment that 
adversely affects prognosis. Our seven-gene prognostic model (AREG, CXCL14, FAM83E, FDCSP, ARHGAP4, EPHX3, and 
SPINK6) exhibited robust performance with AUCs of 0.692, 0.673, and 0.679 for 1-, 3-, and 5-year survival, a C-index of 
0.66, and good calibration. High-risk patients also showed greater sensitivity to targeted agents such as pazopanib 
and imatinib.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is a 
prevalent and aggressive cancer affecting the oral cavity, 
pharynx, and larynx, accounting for approximately 4.41% 
of global cancer cases [1]. Despite advancements in surgi-
cal, radiation, and chemotherapy treatments, the progno-
sis of HNSCC remains poor, with a five-year survival rate 
of less than 50% and a high recurrence rate [2, 3]. The 
complexity of HNSCC is compounded by its biological 
heterogeneity, driven by various etiological factors such 
as tobacco use, alcohol consumption, and human papil-
lomavirus (HPV) infection [4].

This biological variability presents a significant chal-
lenge to effective treatment [5]. Additionally, intrinsic 
and acquired resistance mechanisms, driven by path-
ways such as EGFR signaling and immune evasion, often 
limit the success of current therapies. Although emerging 
treatments such as targeted therapies and immunothera-
pies show promise, their efficacy varies widely among 
patients, underscoring the urgent need for personalized 
treatment strategies. A more precise understanding of 
the molecular mechanisms, especially those driving resis-
tance, is crucial for improving outcomes.

E2F transcription factors (E2Fs) are crucial regulators 
of the cell cycle, overseeing processes such as prolifera-
tion, differentiation, and apoptosis [6]. In normal cells, 
their activity is tightly controlled by regulators like the 
retinoblastoma protein. However, in cancer, genetic 
mutations, epigenetic alterations, or oncogenic inter-
actions disrupt this regulation, leading to aberrant E2F 
activation that drives uncontrolled growth and tumor 
progression [7]. In HNSCC, frequent abnormalities in 
the E2F pathway contribute significantly to tumorigen-
esis by promoting the expression of genes involved in 
DNA replication, cell cycle progression, and apoptosis 
inhibition [8]. Recent studies have further shown that 
dysregulated E2F family members not only underlie 
tumor heterogeneity in HNSCC and other cancers, but 
also correlate with clinical features such as tumor stage, 
grade, and prognosis [9, 10]. Furthermore, E2F expres-
sion profiles correlate with immune cell infiltration in the 
tumor microenvironment (TME), highlighting their role 
in shaping both molecular and immune landscapes [11]. 
Despite this, few studies have systematically integrated 
E2F expression patterns with molecular subtyping, prog-
nosis, immune features, and drug response in HNSCC.

Given the variability of E2F expression and its critical 
role in tumor biology, we hypothesize that distinct E2F 
expression profiles may define HNSCC subtypes with 
differing clinical outcomes and therapeutic responses. 
By elucidating the role of E2Fs in tumor progression and 
immune modulation, this molecular subtyping strategy 
could not only serve as a biomarker for prognosis and 
drug sensitivity but also pave the way for personalized 
treatment strategies and the discovery of novel therapeu-
tic targets.

Materials and methods
Collection of data and preprocessing
The TCGA-HNSC dataset from The Cancer Genome 
Atlas (TCGA, https://www.cancer.gov/tcga) was 
obtained using the “TCGAbiolinks” R package (version 
2.30.0) [12]. The dataset comprised 494 tumor samples 
with complete gene expression profiles data and overall 
survival (OS) details. Baseline clinical characteristics of 
patients in the TCGA-HNSC are presented in Supple-
mentary Table S1. Due to the high proportion of missing 
data for HPV and smoking status in the TCGA-HNSC 
dataset, they were not incorporated into the prognostic 
nomogram, but were considered in subgroup analyses for 
prognostic evaluation. The study focused on eight E2Fs 
(E2F1 to E2F8), which play critical roles in cell cycle reg-
ulation and tumorigenesis.

For validation, we utilized the GSE41613 dataset 
[13], which comprises 97 oral squamous cell carcinoma 
patient samples retrieved from the Gene Expression 
Omnibus (GEO) database on the GPL570 platform. Data 
processing involved removing control probes, excluding 
probes that mapped to multiple genes, and calculating 
the median expression values for genes represented by 
multiple probes.

HNSCC sample subtyping and prognostic analysis
To identify robust molecular subtypes of HNSCC, we 
performed consensus clustering using the Consensus-
ClusterPlus [14] R package. The optimal number of clus-
ters was determined with the getOptK() function, based 
on the expression profiles of eight E2Fs. Clustering was 
performed using the k-means algorithm with Euclidean 
distance, a widely used method for high-dimensional 
gene expression data [15]. The analysis included 1000 
iterations with 80% item resampling to ensure stable 
subtypes. Kaplan–Meier survival curves were plotted, 

Conclusions  These findings reveal two distinct E2F-based molecular subtypes of HNSCC that differ in prognosis, 
functional pathways, immune infiltration, and drug sensitivity. The prognostic model offers valuable risk stratification 
and identifies potential biomarkers and therapeutic targets, warranting further experimental and clinical validation.
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and survival differences between subtypes were assessed 
using the log-rank test.

Analysis of differential gene expression and functional 
enrichment
Differentially expressed genes (DEGs) analysis between 
HNSCC subtypes was performed using the limma 
[16] R package (v3.58.1). DEGs were identified based 
on|log2(FC)| > 1 and a q-value < 0.01, as determined by 
the Benjamini–Hochberg correction, to ensure the inclu-
sion of genes with biologically meaningful expression dif-
ferences. The ClusterProfiler [17] R package was utilized 
to perform enrichment analysis of DEGs for Gene Ontol-
ogy (GO) [18] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [19] pathways. An initial p-value cut-
off of 0.05 was applied, followed by multiple testing cor-
rection using the Benjamini–Hochberg method, with a 
final q-value threshold of 0.05. Results of the enrichment 
analysis were visualized using the ggplot2 R package.

Construction and validation of the prognostic model
The coxph function from the R survival [20] package 
was used to perform univariate Cox regression analy-
sis on all DEGs. Genes with a p-value < 0.05 were iden-
tified as significant prognostic indicators for HNSCC. 
Given that Cox regression is designed to assess survival 
associations rather than expression differences, a fold-
change threshold was not employed at this stage. The 
identified prognostic factors were visualized using a for-
est plot, which was generated using the forestplot R pack-
age. Subsequently, a prognostic model was constructed 
using least absolute shrinkage and selection operator 
(LASSO) regression via the glmnet [21] R package, incor-
porating significant prognostic factors identified from 
the univariate Cox analysis. A risk score for each patient 
was determined by calculating the weighted sum of gene 
expression levels, where 𝛽𝑖 denotes the weight coefficient 
and 𝜒𝑖 denotes the gene expression level.

	
Risk Score =

n∑
i=0

βi ∗ χi

Patients with high or low scores were categorized on 
the basis of their median risk scores. Survival analysis 
utilized the survminer [22] R package, while receiver 
operating characteristic (ROC) curve analysis employed 
the timeROC [23] R package. Cox regression analyses, 
both univariate and multivariate, were conducted to 
assess if the risk score independently predicts progno-
sis. The same formula was used in the validation cohort 
to validate the model and calculate risk scores. A nomo-
gram was created using the R package rms to assess the 

predictive accuracy of the model. Calibration curves were 
generated to evaluate the performance of the nomogram.

Comparison with traditional TNM staging system
To assess the prognostic performance of the constructed 
risk model in comparison with the traditional TNM 
staging system, clinical staging information based on 
the AJCC 7th edition was extracted for patients in the 
TCGA-HNSC cohort. Patients were categorized into 
early-stage (stage I/II) and advanced-stage (stage III/
IV) groups. Kaplan–Meier survival analysis and log-
rank tests were conducted to evaluate differences in OS 
between these groups.

Examination of immune cell infiltration
CIBERSORT classifies 22 immune cell types and has 
been widely validated across various tissue types, particu-
larly in TME studies, where it correlates well with clinical 
outcomes. To explore the immune landscape of the E2F-
based HNSCC subtypes, we used the CIBERSORT algo-
rithm [24] to estimate the relative abundance of immune 
cells in the TME, implemented via the IOBR [25] R pack-
age. Spearman rank correlation analysis was conducted 
to examine the relationships between the risk score, its 
constituent genes, and immune cell proportions.

Analysis of drug sensitivity
We used the pRRophetic [26] R package to predict drug 
sensitivity in HNSCC patients, utilizing data from the 
Genomics of Drug Sensitivity in Cancer database [27] 
(http://www.cancerrxgene.org). The package employs 
a ridge regression model trained on gene expression 
and drug sensitivity data from GDSC to estimate the 
half-maximal inhibitory concentration (IC50) values 
for each drug in TCGA-HNSC samples. To reduce the 
false positive rate, the Benjamini–Hochberg method 
was used for multiple testing correction throughout the 
analysis. Differential expression analysis and compari-
sons of log-transformed IC50 values between high- and 
low-risk groups were both subjected to this correction. 
An adjusted p-value < 0.05 was considered statistically 
significant.

Statistical analysis
Statistical analyses were conducted using R software 
(version 4.2.0; R Foundation for Statistical Computing, 
Vienna, Austria). All results were considered statisti-
cally significant when the p-value was < 0.05. The nota-
tions used are: **** for p < 0.0001, *** for p < 0.001, ** for 
p < 0.01, * for p < 0.05, and ns for non-significant results.

http://www.cancerrxgene.org
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Results
Identification and characterization of E2F-based subtypes 
in TCGA-HNSC
Consensus clustering of TCGA-HNSC samples was per-
formed based on the expression of eight E2Fs. Based on 
Euclidean distance and k-means clustering, the optimal 
number of clusters was determined to be two, supported 
by the consensus matrix heatmap, resulting in the classi-
fication of samples into two molecular subtypes (Fig. 1A). 
Figure  1B illustrates a statistically significant difference 
in prognosis among the subtypes. A significantly poorer 
prognosis was observed in Cluster 1 compared to Cluster 
2 (HR = 1.40; 95% CI: 1.02–1.90; p = 0.035). The expres-
sion levels of the eight E2Fs in the two subtypes, along 
with the clinical features associated with TCGA-HNSC 
samples, are shown in Fig. 1C. Expression levels of E2Fs 
in Cluster 1 were significantly lower than those in Cluster 
2.

Analysis of differential gene expression and functional 
enrichment
Analysis of DEGs between the two clustered subtypes 
revealed 211 genes with differential expression, includ-
ing 102 upregulated in Cluster 1 and 109 downregu-
lated genes in Cluster 2. DEGs and principal component 
analysis (PCA) results for the two E2F-based subtypes 
are shown in Supplementary Fig. S1. Functional enrich-
ment analysis of DEGs revealed a significant correlation 
with the intermediate filament cytoskeleton. The GO 
enrichment analysis initially identified several redundant 
biological processes. To improve clarity, we employed a 
semantic similarity approach using Revigo ​(​​​h​t​t​p​:​/​/​r​e​v​i​g​o​.​i​
r​b​.​h​r​/​​​​​) to consolidate similar terms and reduce redundan-
cies, thereby ensuring clearer biological interpretations. 
Additionally, the GO enrichment analysis of upregulated 
genes in Cluster 1 revealed significant involvement in 
epidermal development, as well as enrichment in cellular 
components such as intermediate filaments and keratin 
envelopes. In terms of molecular function, these genes 
were associated with skin epidermal structural compo-
nents and serine-type endopeptidase activity. KEGG 
pathway analysis further indicated significant enrichment 
in the IL-17 signaling pathway (Fig. 2A). Conversely, GO 
and KEGG analyses of upregulated genes in Cluster 2 
showed that these genes are primarily involved in DNA 
replication, alterations in DNA topology, and double-
strand break repair. These genes were enriched in cellular 
components such as nuclear chromosomal regions, while 
their molecular functions were primarily associated with 
single-stranded DNA binding, ATP-dependent activ-
ity on DNA, and helicase activity. (Fig. 2B). Additionally, 
KEGG pathway analysis revealed significant enrichment 
in the cell cycle and DNA replication pathways.

Prognostic factor identification and prognostic model 
construction
Univariate Cox analysis identified 14 genes as significant 
prognostic factors (Fig. 3A). The optimal λ value resulted 
in the identification of seven genes (Fig. 3B-E) with cor-
responding coefficients. The risk score was determined 
for each patient by using these coefficients. Patients 
were divided into high- and low-score groups based on 
the median score. The survival probabilities differed sig-
nificantly between high- and low-score groups (log-rank 
test, p < 0.001). Time-dependent ROC analysis was used 
to evaluate the predictive accuracy of the model for 1-, 
3-, and 5-year survival rates. The areas under the curve 
(AUCs) at 1, 3, and 5 years were 0.692, 0.673, and 0.679, 
respectively (Fig.  4A-E), with a C-index of 0.66. The 
calibration curve (Fig.  4F) further demonstrated good 
agreement between the predicted and observed survival 
probabilities, indicating that the model predictions were 
well-calibrated in the training cohort.

Prognostic model validation
To assess the stability of the model, the same algorithm 
was used for the GSE41613 dataset, and a score was com-
puted for each sample. Consistent with TCGA cohort 
findings, patients with high scores exhibited reduced 
survival times compared to those with lower scores. The 
validation cohort yielded AUC values of 0.719, 0.666, and 
0.691 for 1-, 3-, and 5-year survival, respectively (Fig. 5A-
E), with a C-index of 0.64. Furthermore, the calibration 
curve (Fig.  5F) demonstrated good agreement between 
predicted and observed survival probabilities, indicating 
that the model predictions were well-calibrated in the 
validation cohort.

Additionally, survival analysis of TCGA-HNSC patients 
was performed using the TNM staging system (AJCC, 
7th edition). Kaplan–Meier analysis revealed no statisti-
cally significant difference in OS between stages I/II and 
III/IV (p = 0.307) (Supplementary Fig. S2A). The time-
dependent ROC analysis yielded AUC values of 0.672, 
0.636, and 0.692 for 1-, 3-, and 5-year survival, respec-
tively, with a C-index of 0.49 (Supplementary Fig. S2B).

Prognostic significance of the risk score
In the TCGA dataset, univariate Cox regression analysis 
demonstrated a significant association between the risk 
score and OS. After adjusting for potential confound-
ers, multivariate analysis confirmed that the risk score 
is an independent predictor of OS. In the training set, 
the high-risk group exhibited an HR of 2.55 (95% CI: 
1.91–3.39, p = 0.001) compared with the low‐risk group 
(Fig.  6A). Similarly, in the validation cohort GSE41613, 
univariate analysis revealed a significant association 
between the risk score and OS, and multivariate analy-
sis confirmed its independent prognostic value (Fig. 6B). 

http://revigo.irb.hr/
http://revigo.irb.hr/
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Fig. 1  Identification and characterization of E2F-based subtypes in TCGA-HNSC. (A) Two subtypes were identified. (B) Overall survival differed signifi-
cantly between the two subtypes (p < 0.05). (C) E2F expression was significantly lower in Cluster 1 compared to Cluster 2. TCGA, The Cancer Genome Atlas; 
HNSC, head and neck squamous cell carcinoma

 



Page 6 of 17Jiang et al. World Journal of Surgical Oncology          (2025) 23:157 

Specifically, the high‐risk group showed an HR of 2.23 
(95% CI: 1.25–3.98, p = 0.006) compared with the low‐
risk group.

A nomogram was constructed by integrating the 
score, gender, stage, and smoking status to predict 1-, 
3-, and 5-year OS probabilities, with the contribution of 
each factor to survival risk proportionally represented 
(Fig.  7A). The calibration curves demonstrated that the 
nomogram effectively predicted OS rates at 1, 3, and 
5 years (Fig.  7B). Decision curve analysis indicated that 
the nomogram based on the combined model provided 
superior predictions of patient survival compared to 
individual prognostic factors (Fig.  7C). As illustrated in 
Fig. 8, significant differences in risk scores were observed 
between HPV-positive and HPV-negative groups, as well 
as among the molecular subtypes of HNSCC patients.

Examination of immune cell infiltration
The high-risk group exhibited significantly increased 
infiltration of M0 and M2 macrophages, activated mast 
cells, resting NK cells, and resting CD4 memory T cells 
compared to the low-risk group (Fig.  9A). Among the 
genes in the prognostic model, AREG demonstrated a 
significant positive correlation with activated mast cells 
and a negative correlation with resting mast cells. In con-
trast, ARHGAP4 was positively associated with CD8⁺ 
T cells, follicular helper T cells, and regulatory T cells 
(Tregs), while showing a negative correlation with resting 
memory CD4⁺ T cells (Fig. 9B).

Analysis of drug sensitivity
Based on drug sensitivity correlation analysis, pazo-
panib, thapsigargin, imatinib, and NVP-TAE684 were 
identified as the top four candidate compounds. The log-
transformed IC50 values for these agents were signifi-
cantly lower in the high-risk score group compared to the 
low-risk group (Fig.  10), indicating that patients in the 
high-risk group may exhibit increased sensitivity to these 
drugs.

Discussion
HNSCC is a heterogeneous group of malignancies with 
significant variations in clinical behavior and treatment 
response. This study examines the role of E2Fs in the 
molecular heterogeneity of HNSCC. Using consensus 
clustering of eight E2Fs from the TCGA-HNSC cohort, 
we identified two distinct subtypes. Notably, despite 
Cluster 1 showing significantly lower expression of all 
eight E2F genes, Cluster 2 patients exhibited significantly 
improved OS. This paradox highlights the complex, con-
text-dependent roles of E2Fs in cancer, where some (e.g., 
E2F1, E2F3) act as oncogenic drivers while others (e.g., 
E2F4, E2F5) may serve as tumor suppressors [28–30]. 
This E2F-based subtyping correlates with differences in 
prognosis, functional enrichments, immune infiltration 
patterns, and drug sensitivities.

We further identified 211 DEGs between the two clus-
ters. In Cluster 1, upregulated genes were predominantly 
involved in epidermal development, indicating a more 

Fig. 2  Functional enrichment of genes differentially expressed between HNSCC subtypes. (A) Dot plot of GO and KEGG enrichment for genes upregulat-
ed in Cluster (1) (B) Dot plot of GO and KEGG enrichment for genes upregulated in Cluster (2) Dot size: gene count; HNSCC, Head and neck squamous cell 
carcinoma; GO, Gene ontology; BP, Biological process; CC, Cellular component; MF, Molecular function; KEGG, Kyoto encyclopedia of genes and genomes
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Fig. 3  Prognostic factor identification and risk score model construction. (A) Univariate Cox regression analysis identifies 14 genes as significant prognos-
tic factors. (B)-(E) Risk score formula constructed using LASSO regression. LASSO, least absolute shrinkage and selection operator
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Fig. 4  Presentation of the prognostic model in the training set for TCGA-HNSC. (A) Distribution of risk scores for each sample in TCGA-HNSC. (B) Survival 
status of each sample in the TCGA-HNSC cohort. (C) Heatmap displaying gene expression levels in groups with high- and low-risk scores. (D) Survival 
curves for groups with high- and low-risk scores. (E) Time-dependent ROC curve. (F) Calibration Curve. TCGA, The Cancer Genome Atlas; HNSC, head and 
neck squamous cell carcinoma; ROC, receiver operating characteristic

 



Page 9 of 17Jiang et al. World Journal of Surgical Oncology          (2025) 23:157 

Fig. 5  Presentation of the prognostic model in the validation set (GSE41613). (A) Distribution of risk scores for each sample in GSE41613. (B) The survival 
status of each sample in GSE41613. (C) Heatmap displaying gene expression levels in groups with high- and low-risk scores. (D) Survival curves for groups 
with high- and low-risk scores. (E) Time-dependent ROC curve. (F) Calibration Curve. TCGA, The Cancer Genome Atlas; HNSC, head and neck squamous 
cell carcinoma; ROC, receiver operating characteristic
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Fig. 6  Independent prognostic value of the score. (A) In the training set TCGA-HNSC, both univariate and multivariate analyses demonstrated that the 
score is an independent prognostic factor. (B) In the validation set GSE41613, both univariate and multivariate analyses demonstrated that the score is an 
independent prognostic factor. TCGA, The Cancer Genome Atlas; HNSC, head and neck squamous cell carcinoma
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differentiated, squamous-like phenotype, while KEGG 
analysis highlighted enrichment of the IL-17 signaling 
pathway, suggesting roles in inflammation and immune 
responses. IL-17 promotes tumor cell proliferation 
and survival by activating various signaling pathways, 
such as the MAPK pathway, thereby affecting patient 

survival [31]. Elevated IL-17 expression in HNSCC is 
linked to poor prognosis, as it fosters immune suppres-
sion and accelerates tumor progression within the TME 
[32]. IL-17 promotes tumor progression by disrupting 
antitumor immune responses through multiple mecha-
nisms, including suppression of chemokine secretion 

Fig. 7  OS in patients with HNSCC. (A) Nomogram for predicting the probabilities of 1-, 3-, and 5-year OS. (B) Calibration curves suggest that the nomo-
gram demonstrates high accuracy in predicting 1-, 3-, and 5-year OS. (C) DCA shows that the nomogram potentially provides better prediction of OS 
in patients compared with the use of individual prognostic factors. OS, overall survival; HNSCC, head and neck squamous cell carcinoma; DCA, decision 
curve analysis
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critical for the recruitment of cytotoxic T lymphocytes 
and NK cells, direct inhibition of their effector func-
tions, and induction of a protumorigenic microenviron-
ment via upregulation of pro-inflammatory cytokines 
such as IL-6 and TNF-α. Furthermore, IL-17 facilitates 
immune evasion by promoting M2 macrophage polariza-
tion, thereby collectively weakening effective antitumor 

immunity [33]. Furthermore, IL-17 drives tumor growth 
and metastasis by activating tumor-associated macro-
phages and lymphocytes [34]. Abnormal expression of 
E2F transcription factors is closely associated with cell 
cycle dysregulation and plays a critical role in tumorigen-
esis, primarily by accelerating the cell cycle and enhanc-
ing DNA replication. Consistent with this role, Cluster 2 

Fig. 8  Comparison of risk scores across HNSCC subgroups defined by clinical features. HNSCC, head and neck squamous cell carcinoma
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showed enrichment in genes related to DNA replication, 
structural alterations, and double-strand break repair. 
This suggests that these tumors exhibit higher prolif-
erative activity and altered DNA metabolism. While 
Cluster 2 was associated with a better overall progno-
sis, this heightened genomic instability and reliance on 
DNA repair pathways may increase their sensitivity to 
DNA-damaging therapies. Overall, these distinct gene 
expression profiles highlight differences in tumor differ-
entiation, immune response, and proliferation, offering 

novel insights into the molecular mechanisms of HNSCC 
and opening avenues for mechanistic studies and tar-
geted therapy development.

Our prognostic model comprises seven genes (AREG, 
CXCL14, FAM83E, FDCSP, ARHGAP4, EPHX3, and 
SPINK6), each contributing uniquely to tumor progres-
sion and the TME. For example, AREG, a member of 
the epidermal growth factor family, activates EGFR and 
its downstream pathways (RAS-RAF-MEK-ERK and 
PI3K-AKT-mTOR), promoting cancer cell proliferation, 

Fig. 9  Analysis of immune cell infiltration. (A) Differences in immune cell infiltration between high- and low-score groups. (B) Correlation between genes 
in the risk score formula, immune cells, and the score
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migration, and survival. Elevated AREG expression is 
strongly associated with increased tumor aggressive-
ness in HNSCC, as it modulates cell cycle–related genes, 
inhibits apoptosis, and enhances Treg-mediated immune 
suppression [35–38]. SPINK6, a serine protease inhibi-
tor, regulates protease activity, especially in skin kerati-
nization. In melanoma, high SPINK6 expression has been 
linked to tumor aggressiveness and metastasis. EGFR/
EphA2 activation promotes tumor cell proliferation and 
migration [39]. SPINK6 is considered one of the immune 
regulatory factors associated with Tregs and plays a cru-
cial role in improving the prognosis of HNSCC patients 
[40]. CXCL14, a highly conserved chemokine primar-
ily expressed in the skin epithelium, plays a multifaceted 
role in tumor immune evasion by recruiting and matur-
ing immune cells and modulating epithelial motility. Its 
role appears context-dependent, with higher levels corre-
lating with decreased survival in some cancers [41] and 
inhibitory effects on tumor proliferation and metastasis 
in others [42]. Abnormal FAM83E expression has been 
associated with cancer cell invasion and metastasis, 
though its mechanisms require further elucidation [43]. 
FDCSP contributes to immune homeostasis by regulating 
B-cell maturation and antibody production, thereby influ-
encing tumor immune surveillance and potentially affect-
ing proliferation and metastasis [44]. ARHGAP4, which 
regulates cytoskeleton reorganization and cell migration, 
is aberrantly expressed in multiple cancers. Its elevated 
expression correlates with poor prognosis, as observed 
in acute myeloid leukemia and colorectal cancer, where 
it also associates with altered immune cell infiltration 
[45, 46]. Finally, EPHX3 is involved in metabolic detoxi-
fication, and hypomethylation of EPHX3 in patients with 
oral squamous cell carcinoma is linked to a poor progno-
sis [47]. Based on correlation analyses between prognos-
tic model genes and immune cells, this study proposes 
potential therapeutic strategies targeting AREG or ARH-
GAP4 to modulate the activity of mast cells and T-cell 

subsets within the TME. For example, inhibiting AREG 
could effectively reduce mast cell activation, thereby 
decreasing the subsequent release of pro-tumor factors. 
Similarly, targeting ARHGAP4 may reduce infiltration or 
suppressive functions of Tregs, consequently enhancing 
the activity of anti-tumor CD8⁺ T cells. Although these 
gene-targeted strategies provide promising therapeutic 
directions, additional research exploring precise molecu-
lar interactions and clinical translation is essential.

The prognostic model developed in this study dem-
onstrated robust predictive performance in both the 
training cohort and the independent validation dataset, 
which is comparable to other reported HNSCC prognos-
tic models, with AUC values generally ranging between 
0.65 and 0.75 [48]. Unlike some models that rely solely 
on traditional clinical parameters or a single biomarker 
[49], our model further integrates data on tumor immune 
infiltration and drug sensitivity to provide a more com-
prehensive risk assessment. For TCGA-HNSC, the sur-
vival curve analysis based on the TNM staging system 
did not achieve statistical significance, likely because it 
fails to fully capture the complexity of patient prognosis. 
This suggests that the inherent heterogeneity of HNSCC 
calls for a more robust prognostic model. Although the 
current LASSO regression effectively selects key genes 
for risk modeling, it may have limitations in captur-
ing nonlinear features. In the future, more sophisticated 
machine learning algorithms, such as XGBoost or deep 
learning approaches, could be considered to enhance the 
capacity of the model for nonlinear fitting [50].

It is important to note that the risk score from the pre-
dictive model may be influenced by platform-specific 
biases, as the TCGA dataset utilized RNA sequenc-
ing while the GSE41613 dataset employed microar-
ray technology. The GSE41613 cohort included 97 
samples, whereas the TCGA-HNSC dataset contained 
494 samples. Although external validation was reliable, 
differences in sequencing platforms and sample sizes 

Fig. 10  Differences in drug sensitivity between high- and low-risk score groups for four drugs
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underscore the need for future platform-independent 
evaluations to enhance the generalizability and reliability 
of the prognostic model.

In high-risk HNSCC patients, increased infiltra-
tion of immune cells such as M0 and M2 macrophages, 
activated mast cells, resting NK cells, and resting CD4⁺ 
memory T cells creates a more immunosuppressive and 
tumor-promoting TME. Specifically, high levels of M0 
macrophages, precursors capable of differentiating into 
either proinflammatory M1 or anti-inflammatory M2 
cells, indicate a reservoir of newly recruited cells poised 
to respond to TME signals [51]. Upon differentiation, 
M2 macrophages predominantly support tissue repair, 
angiogenesis, and matrix remodeling, which facilitate 
immune evasion and tumor dissemination, key processes 
linked to a poor prognosis [52]. Elevated activated mast 
cells further exacerbate tumor progression by releasing 
mediators, such as histamines and cytokines, that pro-
mote angiogenesis and modulate immune responses [53]. 
These factors collectively shape a TME that is conducive 
to tumor growth and metastasis. Although NK cells and 
CD4⁺ memory T cells are typically associated with antitu-
mor activity, their resting state in high-risk patients sug-
gests functional suppression. This suppression is likely 
driven by inhibitory influences from Tregs or immune 
checkpoint molecules, such as PD-1/PD-L1, reducing 
their ability to eliminate tumor cells and contributing to 
immune tolerance within the TME [54]. This suggests 
that the immune cells in high-risk patients are function-
ally suppressed, preventing effective immune surveillance 
and enhancing tumor survival. It is noteworthy that we 
analyzed data from the TCGA-HNSC dataset to examine 
the relationship between HNSCC subtypes constructed 
based on E2F expression and the immune microenviron-
ment as well as patient outcomes. Our findings indicate 
that these factors are statistically associated rather than 
directly causal.

Although tumor purity may influence immune cell 
estimation, CIBERSORT remains a reliable and widely 
used method for immune deconvolution. Previous stud-
ies in glioblastoma have shown that most immune cell 
frequencies in tumors are below 0.2%, a range challeng-
ing for flow cytometry to accurately measure [55]. Given 
these complexities, future studies employing single-cell 
RNA sequencing are crucial for refining cell-type dif-
ferentiation and elucidating how immune cells interact 
with tumor cells to affect clinical outcomes. These studies 
will provide deeper insights into the functional roles of 
immune cells in the TME and help develop strategies to 
target immune suppression in high-risk patients.

Our study showed that high-risk patients had lower 
log(IC50) values for pazopanib, thapsigargin, imatinib, 
and NVP-TAE684, indicating greater sensitivity to these 
drugs and suggesting that they may be more effective 

for treating high-risk patients. Pazopanib, a multi-target 
tyrosine kinase inhibitor that primarily targets VEGFR, 
PDGFRs, and c-Kit, has shown variable efficacy in clinical 
studies both as monotherapy and in combination treat-
ments, particularly in recurrent or metastatic disease [56, 
57]. Thapsigargin, a potent inhibitor of the sarcoplasmic/
endoplasmic reticulum Ca²⁺ ATPase, disrupts ER cal-
cium homeostasis, leading to ER stress and apoptosis 
[58]. Although not widely used in HNSCC, its ability to 
induce apoptosis may benefit cases resistant to conven-
tional therapies. Imatinib, which targets BCR-ABL, c-Kit, 
and PDGFR, has proven effective in other malignancies 
such as chronic myeloid leukemia and gastrointestinal 
stromal tumors; however, its role in HNSCC remains 
under investigation, with further research needed to 
identify predictive biomarkers [59, 60]. NVP-TAE684, a 
small-molecule ALK inhibitor, offers potential as a tar-
geted therapy in HNSCC, although ALK rearrangements 
are rare in this cancer compared to others like non-small 
cell lung cancer, necessitating further research to assess 
its clinical utility [61]. Overall, the observed drug sensi-
tivity in high-risk patients underscores the potential of 
these agents in personalized HNSCC treatment, warrant-
ing further preclinical and clinical validation.

Several limitations must be considered when interpret-
ing our findings. First, the limited HPV status data in the 
TCGA-HNSC dataset precluded the inclusion of HPV 
status as a covariate. With only 7 HPV-positive cases and 
23 HPV-negative cases, the small sample size hindered 
robust statistical adjustment. Second, the absence of lab-
oratory experiments limits our mechanistic insights, and 
the moderate sample size may not fully capture HNSCC 
heterogeneity, affecting generalizability. Third, the lack of 
comprehensive clinical validation restricts the applicabil-
ity of our prognostic model. Finally, our drug sensitivity 
predictions, derived from GDSC in vitro data and com-
putational modeling, may not directly correlate with clin-
ical outcomes. Both in vitro and in vivo validations are 
essential to confirm these findings and assess their clini-
cal relevance.

Conclusions
This study provides a comprehensive analysis of the 
molecular characteristics of HNSCC, emphasizing the 
pivotal role of E2Fs. By identifying distinct molecular 
subtypes and constructing a prognostic model, our work 
enhances the understanding of the molecular landscape 
in HNSCC. The findings indicate potential biomarkers for 
diagnosis and novel therapeutic targets that may improve 
personalized treatment strategies. Future integration of 
these results with laboratory and clinical research will 
be crucial for translating them into clinical practice and 
advancing personalized medicine in HNSCC.
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