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Abstract
Background  Protein aggrephagy, a selected autophagy process response for degrading protein aggregates, plays 
a critical role in various cancers. However, its regulatory mechanisms and clinical implications in hepatocellular 
carcinoma (HCC) remain largely unexplored.

Methods  We integrated bulk RNA-seq data from TCGA and single-cell RNA sequencing (scRNA-seq) data from GEO 
databases to systematically analyze aggrephagy-related genes (AGGRGs) in HCC. Prognostic aggrephagy-related 
genes (AGGRGs) were identified through univariate Cox and LASSO regression analyses, followed by the construction 
of a risk prediction model. Patients were stratified into high- and low-risk groups based on the median risk score. 
Comparative analyses were performed to assess clinical outcomes, pathway enrichment, and drug sensitivity. 
Independent risk factors were incorporated a nomogram using univariate and multivariate Cox regression. At the 
single-cell level, the AGG scores were calculated using AUCell algorithm, and cell interactions and pseudotime 
trajectory analyses were conducted. Finally, protein levels of key AGGRG was assessed via tissue microarray.

Results  Eight AGGRGs (PFKP, TPX2, UBE2S, GOT2, ST6GALNAC4, ADAM15, G6PD, and KPNA2) were identified as 
prognostic markers for HCC. The high-risk group exhibited significantly worse survival outcomes, heightened drug 
resistance, and enrichment in cell cycle, mTORC1 signaling, and reactive oxygen species pathways. Single-cell 
transcriptomic analysis revealed 11 distinct cell types within the HCC tumor microenvironment (TME), including 
hepatocytes, T cells, NK cells, macrophages, monocytes, dendritic cells, plasma B cells, mature B cells, mast cells, 
endothelial cells, and fibroblasts. Hepatocytes exhibited the highest AGGRG scores and were associated with 
metabolic reprograming, proliferation, and immune evasion. Further subclustering of malignant hepatocytes using 
inferCNV revealed eight functionally heterogeneous subpopulations with extensive intercellular crosstalk. Trajectory 
analysis showed G6PD- and CCNB1-expressing subpopulations in early-to-intermediate differentiation states, whereas 
C3 and ARGs marked terminal differentiation. Notably, G6PD was predominantly expressed in early and mid-stages, 
while KPNA2, PFKP, and TPX2 were upregulated in advanced tumor states. Immunohistochemical (IHC) validation 
confirmed significant overexpression of G6PD in HCC tissues compared to adjacent normal tissues.
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Introduction
Liver cancer is the third leading cause of cancer-related 
deaths, with approximately 865,000 new cases and 
757,948 deaths reported in 2022. Hepatocellular car-
cinoma (HCC) accounts for over 80% of primary liver 
cancers [1]. The primary etiological factors driving HCC 
development include chronic hepatitis B virus (HBV) and 
hepatitis C virus (HCV) infections, which contribute to 
hepatocarcinogenesis [2]. Additional risk factors encom-
pass aflatoxin exposure, heavy alcohol consumption, 
smoking, excess body weight, and metabolism disorders 
such as non-alcoholic steatohepatitis (NASH) and type 
2 diabetes mellitus [2, 3]. Although the widespread use 
of the HBV vaccine has reduced HBV infections [4], and 
improvements in early detection and therapeutic strate-
gies have enhanced the prevention efforts [5], high recur-
rence rates and poor five-year survival outcomes remain 
as major clinical challenges [6]. Therefore, elucidating the 
molecular mechanisms underlying HCC pathogenesis 
and identifying novel prognostic biomarkers are impera-
tive for developing more effective therapeutic interven-
tions and improving patient survival.

The ubiquitin–proteasome system (UPS) and autoph-
agy are the two primary cellular pathways responsible 
for maintaining cellular homeostasis, or proteostasis, by 
mitigating the harmful effects of unfolded, misfolded, or 
damaged proteins [7]. When the proteasome function is 
impaired, aggrephagy (AGG), a selective autophagic pro-
cess that clears potentially toxic protein aggregates [8]. 
Growing evidence implicates that AGG plays a critical 
role in various pathological conditions, including cancer 
[9]. In tumorigenesis, AGG plays a particularly intriguing 
role.

Notably, p53 mutant aggregation drives oncogenesis 
through multiple mechanisms, including loss of func-
tion, dominant-negative effects, and gain-of-function 
effects [10]. Targeting p53 protein aggregation has been 
proposed as a potential anticancer therapeutic strategy 
[11]. Recent work by Sun et al. further highlighted the 
clinical relevance of AGG by characterizing its role in 
the tumor microenvironment (TME) of lung adenocar-
cinoma (LUAD) and identifying AGG-related prognos-
tic markers [12]. Despite these advances, the functional 
significance and regulatory mechanisms of AGG in HCC 
remain poorly understood.

This study employed a multi-omics approach, inte-
grating bulk RNA sequencing (RNA-seq) and single-cell 
RNA sequencing (scRNA-seq) analysis to systematically 

in HCC pathogenesis and their potential as prognostic 
biomarkers. Finally, we employed immunohistochemi-
cal (IHC) analysis to confirm the protein levels of key 
AGGRGs in HCC tumors, thereby bridging the gap 
between bioinformatic predictions and clinical relevance.

Methods and statistical analysis
Data collection
The RNA-seq data, clinical information, and single nucle-
otide mutation data for TCGA-LIHC cohort (comprising 
371 HCC tumor samples and 50 normal samples) were 
collected from the UCSC Xena website ​(​​​h​t​t​p​s​:​/​/​x​e​n​a​b​r​
o​w​s​e​r​.​n​e​t​/​​​​​) and used as training dataset. mRNA expres-
sion profiles of 81 HCC tumor samples and correspond-
ing clinical data were obtained from Gene Expression 
Omnibus (GEO) under accession GSE54236 and used as 
a validation dataset to assess the risk model. Additionally, 
mRNA expression profiles of 247 HCC tumor samples 
from GEO database under accession GSE14520 and used 
as a validation dataset to evaluate the expression of the 
key genes. Single-cell RNA-seq (scRNA-seq) data for pri-
mary and/or metastatic tumor tissues and adjacent non-
tumor livers were obtained from 10 patients with HCC 
by accessing GSE149614 in GEO database [13]. Addition-
ally, a total of 1,368 Aggrephagy-related genes (AGGRGs) 
were downloaded from the GeneCards Human Gene 
Database (GeneCards, https://www.genecards.org/).

Identification of the differentially expressed genes (DEGs) 
and selection of aggrephagy-related genes (AGGRGs) 
based on bulk RNA-seq data
The differentially expressed genes (DEGs) between HCC 
tumor samples and normal samples from TCGA-LIHC 
cohort were identified using DESeq2 package (version 
1.38.2) with the thresholds of log2 |fold change (FC)| > 1 
and p-value < 0.05. The differentially expressed AGGRGs 
(DE-AGGRGs) were obtained by intersecting DEGs and 
1,368 AGGRGs from GeneCards database (Table S1).

Construction and evaluation of a AGG-related prognostic 
model
Univariate Cox regression analysis was performed 
using “survival” package to obtain the survival-related 
AGGRGs with the criteria of p-value < 0.05. These 
AGGRGs were shrunk using least absolute shrinkage and 
selection operator (LASSO) regression using “glmnet” 
package. The selected prognostic AGGRGs were visu-
alized using a forest plot generated by the “forestplot” 

Conclusion  These findings provide a molecular framework for targeting aggrephagy pathways in HCC treatment 
strategies.
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package. Hazard ratio (HR) > 1 represents risk factor, and 
HR < 1 represents protective factor. Subsequently, risk 
score was calculated according to the formula, risk score 
=

∑
n
i=1(expi × β i), where expi represents expression 

level of each gene, and βi represents coefficient of cor-
responding gene. Patients with HCC in both the training 
set (TCGA-LIHC cohort) and validation set (GSE54236 
cohort) were stratified into high-risk and low-risk groups 
based on the median of risk score. Kaplan-Meier (KM) 
survival curves were drawn using the “survminer” pack-
age, and the survival differences between high-risk and 
low-risk groups were determined using the log-rank 
test. Finally, the receiver operating characteristic (ROC) 
curves for 1- and 3-year were generated using “survival-
ROC” package, and the area under the curve (AUC) value 
was calculated to assess the predictive performance of 
the prognostic model.

Analysis of clinical characteristics, functional enrichment, 
drug sensitivity between high- and low-AGG risk score 
groups
Differences in clinical characteristics (race, age, gender, 
and stage) between high-risk and low-risk groups were 
evaluated using the chi-squared test. K-M curves strati-
fied by clinical characteristics (age, gender, and stage) 
were generated to assess survival differences between the 
high-risk and low-risk groups. Functional enrichment 
analysis between high-risk and low-risk groups was per-
formed using the “GSVA” package, with differential path-
way enrichment assessed between the two groups using 
the “Limma” package. Furthermore, the drug sensitivity 
between high-risk and low-risk groups was predicted 
using “oncoPredict” package, based on Genomics of Drug 
Sensitivity in Cancer 2 (GDSC2, ​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​a​n​c​​e​r​r​​x​g​e​
n​​e​.​​o​r​g​/​c​o​m​p​o​u​n​d​s) database [14].

Construction and evaluation of a predictive nomogram
The risk score and clinical characteristics (race, age, gen-
der, and stage) were integrated into the univariate and 
multivariate Cox regression analyses to select the inde-
pendent risk factors using “survival” package. A predic-
tive nomogram was constructed and visualized using 
“rms” and “regplot” packages base on the identified 
independent risk factors. A calibration curve was gen-
erated using “rms” package to evaluate the accuracy of 
the nomogram. The ROC curves were used to evaluate 
the sensitivity of the nomogram. And the decision curve 
analysis (DCA) curve was constructed to evaluate the 
clinical significance of the nomogram.

Validation of the expression of prognostic genes in 
external dataset
The mRNA expression of prognostic genes in HCC 
tumor samples and normal samples was evaluated in 

GSE14520 dataset. K-M curves were generated to assess 
survival differences between the high-expression and 
low-expression group for each prognostic gene. Addi-
tionally, ROC curves were constructed to assess the sen-
sitivity of each prognostic gene.

Quality control and cell annotation in scRNA-se Q data
In the present study, Seurat package (version 4.3.0) was 
used to scRNA-seq data analysis. After excluding three 
samples (HCC07P, HCC08P, and HCC10L), 10 HCC 
tumor samples and 8 adjacent non-tumor samples were 
used for subsequent analyses. First, Low-quality cells 
were filtered based on the following criteria: fewer than 
3 transcripts per cell, fewer than 200 or more than 7,000 
expressed genes, or more than 20% mitochondrial genes. 
Finally, 71,050 cells and 25,479 genes were retained for 
further analysis. The scRNA-seq data were then nor-
malized using “NormalizeData” function. The normal-
ized data were transformed into Seurat objects, and the 
top 2,000 highly variable genes (HVGs) were selected 
using “FindVariableFeatures” function. Principle com-
ponent analysis (PCA) was performed for linear dimen-
sion reduction using “RunPCA” function based on 
2,000 HVGs. Batch correction and integration of the 18 
samples were carried out using the “harmony” package. 
Dimensionality reduction and visualization was per-
formed using uniform manifold approximation and pro-
jection (UMAP) with the “RunUMAP” and “DimPlot” 
functions. Finally, cell clustering was performed using the 
“FindNeighbors” and “FindClusters” functions, followed 
by manual annotation to identify different cell clusters.

Aggrephagy-related signature score
The AGG-score for each cell was calculated based on the 
expression profiles of AGGRGs using “AUCell” package. 
Cells were then classified into high-AGG and low-AGG 
score groups based on the median AUC value for further 
analysis.

Functional enrichment analysis
Pathway enrichment between the high-AGG and low-
AGG score groups was assessed using Gene set variation 
analysis (GSVA) with the “GSVA” package. Differential 
pathway enrichment between the two groups was deter-
mined using “limma” package. Additionally, the expres-
sion patterns of prognostic AGGRGs across different cell 
types were analyzed.

Copy number alteration (CNV) inference
The CNV score for hepatocytes was assessed using “infer-
CNV” R package. K-means clustering was applied to dif-
ferentiate malignant from non-malignant hepatocytes.

https://www.cancerrxgene.org/compounds
https://www.cancerrxgene.org/compounds
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Nonnegative matrix factorization (NMF) clustering in 
hepatocytes
The “NMF” package was used to extract cluster top load-
ing features and perform dimensionality reduction analy-
sis on hepatocytes based on the scRNA-seq expression 
matrix [15]. The optimal number of clusters was deter-
mined using the cophenetic coefficient.

Cell-to-cell communication
The “CellChat” package was used to analyze intercellular 
interactions in scRNA-seq data [16]. In the present study, 
we focused on the communication dynamics between 
high AGG-score group and low AGG-score group, as 
well as among the different hepatocyte subpopulations. 
The “netAnalysis_contribution” function was utilized to 
assess the contribution of the ligand-receptor interac-
tions within the intercellular communication networks. 
Furthermore, key cellular pathways influenced by these 
interactions were identified to provide insights into the 
underlying molecular mechanisms.

Pseudotime trajectory analysis
Pseudotime trajectory analysis was performed using the 
“Monocle 2” package to elucidate the cellular evolution 
patterns of hepatocytes in relation to AGG-score. The top 
2,000 HVGs were selected as the features genes. Dimen-
sionality reduction was conducted using the “reduceDi-
mension” function, and the trajectory was constructed 
and visualized using “plot_cell_trajectory” function. The 
“DDRtree” algorithm was applied to infer pseudotime 
progression and cellular differentiation states. Addition-
ally, the expression dynamics of prognostic AGGRGs in 
hepatocytes were analyzed to reveal their trends across 
pseudotime.

Validation of the protein expression of G6PD in HCC
To investigate the expression of G6PD protein in HCC, 
we analyzed data from the Human Protein Atlas (​h​t​t​p​​s​:​/​​/​
w​w​w​​.​p​​r​o​t​e​i​n​a​t​l​a​s​.​o​r​g​/) to compare its expression in HCC 
tumor tissues and normal liver tissues. Subsequently, 
tissue microarray (TMA) and immunohistochemis-
try (IHC) were performed to validate the expression of 
G6PD protein in HCC tumor tissues and adjacent non-
tumor tissues. The TMA of HCC samples was purchased 
from Shanghai Xinchao Biotechnology Co. and included 
166 HCC samples (83 tumor tissues and their adjacent 
non-tumor counterparts). The microarray sections were 
incubated overnight at 4  °C with a primary antibody 
anti-G6PD (1:600, ab210702, Abcam, MA, USA), fol-
lowed by incubation with a secondary antibody for 1  h 
at room temperature. Finally, the samples were stained 
with DAB and hematoxylin for visualization. To quan-
titatively assess G6PD expression, the histological score 
(H-score) was calculated based on staining intensity and 

coverage. The H-score ranged from 0 to 300, determined 
using the formula, H-score =

∑
 (I × Pi), where Pi repre-

sents the percentage of positively stained tumor cells, and 
I denotes the staining intensity [17].

Results
Construction and evaluation of an AGG-related prognostic 
model
In the represent study, we systematically integrated 
the gene expression data, scRNA-seq data, and protein 
expression data to investigate the prognostic significance 
and molecular characteristics in HCC. The overall study 
design is illustrated in the workflow chart (Fig. 1).

First, a total of 6,852 DEGs (5,275 upregulated and 
1,577 downregulated) were identified between tumor and 
normal samples in TCGA-LIHC cohort (Fig.  2A, Table 
S2). Subsequently, 138 differentially expressed AGGRGs 
(DE-AGGRGs) were yielded by intersecting 6,852 DEGs 
and 1,368 AGGRGs obtained from GeneCards (Fig.  2B, 
Table S3).

Next, 138 AGGRGs were incorporated into univariate 
Cox (Table S4) and LASSO regression analyses to select 
the prognostic genes (Fig. 2C-D). Eight AGGRGs (PFKP, 
TPX2, UBE2S, GOT2, ST6GALNAC4, ADAM15, G6PD, 
and KPNA2) were identified as the prognostic genes. 
Then, the AGG-related risk score was calculated based on 
eight prognostic genes to construct a risk model. Patients 
in both TCGA-LIHC and GSE54236 cohorts were strati-
fied into high-risk and low-risk groups according to the 
median of risk score (Fig. 2E and H). K-M survival analy-
sis indicated that significantly worse clinical outcomes in 
high-risk patients compared to their low-risk counter-
parts in both cohorts (Fig. 2F and I).

To further evaluate the predictive performance of 
our model, we generated time-dependent ROC curves. 
The model demonstrated excellent prognostic capa-
bility, with area under the curve (AUC) values of 0.81 
and 0.71 for 1- and 3-year survival prediction in the 
TCGA-LIHC cohort, respectively (Fig.  2G). Similarly, 
in the GSE54236 cohort, the model achieved outstand-
ing AUC values of 0.98 and 0.75 for 1- and 3-year sur-
vival prediction (Fig.  2J). These findings suggest that 
our AGG-related risk model exhibits robust perfor-
mance in survival prediction, particularly for short- to 
medium-term (1–3 years) prognosis in HCC patients.

Analysis of clinicopathological characteristics, functional 
enrichment, and drug sensitivity between high- and low-
AGG risk score groups
To further characterize the clinical relevance of our 
prognostic model, we explored the association between 
AGG-related risk scores and the clinicopathological 
characteristics in the TCGA-LIHC cohort. While no 
significant differences in age, gender, and race between 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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high-risk and low-risk groups, we observed the nota-
ble differences in clinical stages, with higher-risk 
patients tending to present with more advanced stages 
(Fig.  3A-E). Stratified survival analysis demonstrated 
that elevated risk scores were consistently associated 
with poorer clinical outcomes across all subgroups, 
indicating the robustness of our model independent 
of other clinicopathological factors (Fig.  3F). More-
over, functional enrichment analysis revealed distinct 
biological pathways associated with each risk groups 
(Fig.  3G). High risk score group exhibited significant 
enrichment in cell cycle-related pathways (mitotic 
spindle, G2M checkpoint, E2F targets) and mTORc1 
signaling pathway, and reactive oxygen species (ROS) 
pathway. In contrast, the low-risk group showed pre-
dominant activation of interferon gamma (IFN-γ) 
response, hypoxia, glycolysis, MYC target v1, and oxi-
dative phosphorylation. Furthermore, drug sensitivity 
demonstrated that high-risk patients displayed signifi-
cant resistance to multiple chemotherapeutic agents, 
including Camptothecin, Gefitib, Cisplatin, Docetaxel, 
Vinblastine, and Cytarabine (Fig.  3H). These find-
ings suggest that the AGG-related risk score not only 
serves as a robust prognostic indicator but also reflects 

distinct molecular characteristics and treatment 
responses in HCC patients.

Development of a predictive nomogram
To further assess the clinical utility of our prognostic 
model, the univariate and multivariate cox regression 
analyses were performed to identify the independent 
factors (Fig.  4A-B). The AGG-related risk score and 
clinical stages were identified as independent factors 
(Fig.  4A-B). Then, we construct a predictive nomo-
gram based o the independent factors (Fig.  4C). The 
calibration curve analysis indicated the concordance 
between observation and prediction, suggesting that 
the excellent predictive accuracy of the nomogram 
(Fig.  4D). The predictive performance was further 
validated through ROC analysis, the AUC value of 
0.697 for clinical stage, and 0.81 for risk score, which 
indicated the superior sensitivity of the nomogram 
(Fig. 4E). The DCA curve revealed that the nomogram 
and risk score were more stable and accurate in accu-
rate prognostic predictions compared to using clinical 
stage alone (Fig.  4F). These findings suggest that our 
nomogram serves as a robust tool for individualized 
prognosis prediction in HCC patients.

Fig. 1  Workflow chart of the this study

 



Page 6 of 15Xie and Wang World Journal of Surgical Oncology          (2025) 23:175 

Single-cell characterization of the tumor 
microenvironment (TME) in HCC
We further characterized the cell landscape of HCC by 
performing high-resolution single-cell RNA-sequenc-
ing analysis of the TME. Following rigorous quality 
control, a total of 71,050 cells and 25,479 genes were 
retained for further analysis (Figure S1A-D). After 
sample integration and batch effects correction (Fig-
ure S1E-F), unsupervised clustering revealed that 
cells were clustered into 26 distinct cellular subgroups 
(Figure S1G, and Fig. 5A). Subsequently, eleven major 
cell clusters were manually annotated according to 
the known markers for each cell populations (Fig.  5B 
and D), including hepatocyte, T cell, natural Killer 

(NK) Cell, macrophage (Mac), monocyte (Mono), 
dendritic cells (DCs), plasma B, mature B, mast cell, 
endothelial cell (Endo), and fibroblast. As shown in 
Fig.  5C, we observed significant compositional differ-
ences between tumor and normal samples. Generally, 
we found the increased proportions of hepatocyte, 
mast cell, and fibroblast, while the decreased infiltra-
tion of other cell types in tumor samples compared 
to normal samples. Notably, hepatocytes contributed 
to the predominant cellular component in HCC TME 
(Fig. 5C and E). The CNV analysis demonstrated that 
significantly elevated CNV scores in tumor-derived 
hepatocytes compared to their normal counterparts, 
conforming their malignant transformation (Fig.  5F 

Fig. 2  Construction and Evaluation of an AGG-Related Prognostic Model. (A) The volcano plot of DEGs between tumor samples and normal samples 
in the TCGA-LIHC dataset with the thresholds of log2 |FC| > 1 and p-value < 0.05. (B) The Venn diagram of differentially expressed AGGRGs by interest-
ing DEGs of TCGA-LIHC dataset and 1,368 AGGRGs from GeneCards database. (C) The plots of coefficient distribution of log (lambda) of LASSO regres-
sion model. (D) Selection of the optimal parameters (lambda) of LASSO regression model. (E) and (H) Upper: Patients in (E) TCGA-LIHC cohort and (H) 
GSE54236 cohorts were divided into high-risk and low-risk groups according to median value of risk score. Medium: Survival states of patients in (E) TCGA-
LIHC cohort and (H) GSE54236 cohorts. Bottom: Heatmap of the expression of prognostic genes in (E) TCGA-LIHC cohort and (H) GSE54236 cohorts. (F) 
and (I) Kaplan − Meier survival curves of the survival states between high-risk and low-risk groups in (F) TCGA-LIHC cohort and (I) GSE54236 cohorts. (G) 
and (J) Time-dependent ROC curves for 1- and 3-year survival of patients in (G) TCGA-LIHC cohort and (J) GSE54236 cohorts
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Fig. 3  Analysis of clinicopathological characteristics, functional enrichment, and drug sensitivity between high- and low-agg risk score groups. (A)-(D) 
Boxplots of differences in clinicopathological characteristics (age, gender, race, and clinical stages) between high-risk and low-risk groups in TCGA-LIHC 
cohort. (E) Pie chart of differences in clinicopathological characteristics (age, gender, race, and clinical stages) between high-risk and low-risk groups in 
TCGA-LIHC cohort. (F) Kaplan − Meier survival curves of the survival states between high-risk and low-risk groups in TCGA-LIHC cohort, patients stratified 
with clinicopathological characteristics (age, gender, race, and clinical stages). (G) Bar plots of the differentially enriched pathways between high-risk and 
low-risk groups in TCGA-LIHC cohort. (H) Boxplots of differences in half maximal inhibitory concentration (IC50) value between high-risk and low-risk 
groups in TCGA-LIHC cohort
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and G). Then, eight distinct hepatocyte subpopula-
tions were identified using NMF clustering methods 
(Fig.  5H-I). This refined classification revealed previ-
ously unappreciated diversity within the malignant 
hepatocyte compartment, suggesting potential func-
tional specialization among tumor cells.

Identification of the AGG-related cell populations
To investigate the AGG activity at single-cell solution, 
AUCell algorithm was used to calculate the AGG-
score for each cell (Fig.  6A), all cells were distributed 
into high- and low-AGG score groups (Fig. 6B), reveal-
ing that shrinking cellular heterogeneity within the 
TME. Hepatocytes were identified as the predominant 
AGG-active population, comprising more than 75% of 
high-AGG score cells (Fig. 6C).

In addition, functional enrichment analysis revealed 
that high-AGG score cells were involved in cell cycle 
(E2F targets and MYC targets V2), metabolism repro-
graming (bile acid and fatty acid metabolism), and 
immune evasion mechanisms (wnt-β/catenin, and 
TNFs/NF-кB signaling pathways) (Fig.  6D). While, 
the low-AGG score cells were involved in metabolic 

regulation (cholesterol homeostasis) and inflamma-
tory response (TGF-β, and IL6/JAK/STAT3 signaling 
pathways) (Fig.  6D). These results demonstrate that 
AGG activity defines functionally distinct cellular 
states within the HCC ecosystem. The predominance 
of hepatocytes in the high-AGG compartment particu-
larly implicates malignant hepatocytes as key drivers 
of AGG-related pathophysiology in HCC.

Analysis of cell-to-cell communication and cell-state 
transition trajectories with AGG score
Through comprehensive evaluation of ligand-receptor 
pair expression patterns, we systematically character-
ized the spectrum of interactions among cellular clusters 
(Fig.  7A). Additionally, we investigated the communica-
tion patterns between high-AGG score hepatocytes and 
their low-AGG score counterparts in terms of interac-
tion intensity and partner diversity (Fig.  7B). Our find-
ings revealed that high-AGG score exhibited significantly 
more extensive and stronger interactions with vari-
ous cell types compared to low-AGG score hepatocytes 
(Fig. 7C-D). The heatmap visualization of signaling direc-
tionality identified 77 distinct signaling pathways, which 

Fig. 4  Development of a Predictive Nomogram. (A)-(B) Forest plots of univariate and multivariate Cox regression analyses in TCGA-LIHC cohort by incor-
porating risk score and clinicopathological characteristics (age, gender, race, and clinical stages). (C) Nomogram of predicting of overall survival for HCC 
patients in TCGA-LIHC cohort. (D) Calibration curve, (E) decision curve, and (F) ROC curve for nomogram
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Fig. 5  Single-Cell Characterization of the Tumor Microenvironment (TME) in HCC. (A) UMAP plots of 26 cell clusters. (B) UMAP plots of distribution of 11 
annotated cell populations. (C) Histogram of the percentage of cell types between tumor samples and normal samples. (D) Bubble plots of the top 3 gene 
markers for each cell type. (E) Histogram of the numbers of cell types across different samples. (F) Violin plots of the CNV score for hepatocytes across dif-
ferent samples. (G) Heatmap of the CNV patterns in hepatocytes across different samples. (H) UMAP plots of 8 cell clusters of hepatocytes. (I) UMAP plots 
of distribution of 8 re-clustered sub-groups of hepatocytes
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contributed to the enhanced communication capac-
ity of high-AGG score hepatocytes (Fig.  7E). We fur-
ther observed a broadcast-type communication pattern 
among hepatocyte subpopulations (Fig. 7F). The detailed 
analysis revealed that particularly robust interaction net-
works centered around hepa1 (C3) and hepa3 (GGH) 
subtypes (Fig. 7G). These findings suggest that AGG was 
involved in mediating both hepatocyte-extrinsic commu-
nications and intrinsic inter-subpopulation interactions.

We further performed the pseudotime trajectory analy-
sis to investigate the differentiation dynamics of high-
AGG score hepatocyte (Fig.  7H), the results revealed 
that hepatocytes were categorized into three states 
(state1/2/3). The trajectory of subpopulations of hepato-
cytes indicated that hepa7 (G6PD) and hepa8 (CCNB1) 
corresponded to early and intermediate cellular phases, 
while hepa1 (C3) and hepa2 (AGR2) associated with 
advanced and terminal cellular phases (Fig.  7I). These 
results reflect a gradual transition from an early state of 
metabolic activity and rapid proliferation towards func-
tional maturation, accompanied by substantial transcrip-
tional reprogramming along the pseudotime axis.

Single-cell validation of the prognostic AGGRGs expression
We have established the prognostic significance of 
AGGRGs at transcriptome level, we next explored their 
expression patterns at single-cell level. We observed that 
widespread expression of these genes across hepato-
cyte populations (Fig.  8A), with particularly prominent 
expression of GOT2 and G6PD in hepatocytes. Pseu-
dotime projections analysis of transcriptional dynam-
ics demonstrated distinct temporal expression patterns 
among prognostic genes. Upregulation of G6PD was 
observed in early cellular phases, while upregulation of 
KPNA2, PFKP, and TPX2 were observed in advanced 
and terminal cellular phases (Fig.  8B). Comparative 
analysis between tumor and normal samples revealed 
fundamental differences in developmental expres-
sion patterns (Fig.  8C). We observed more heteroge-
neous gene expression distributions in normal samples, 
whereas pronounced phase-specific expression peaks in 
tumor samples, which were G6PD and KPNA2 exhibited 
significant expression peaks in early cellular phases, but 
KPNA2, PFKP, UBE2S, and TPX2 showed higher expres-
sion levels in the advanced and terminal cellular phases 
in the tumor samples. These results suggested that these 

Fig. 6  Identification of the AGG-related cell populations. (A) UMAP plots of distribution of cell populations with AUCell score based on the expression 
profiles of AGGRGs. (B) UMAP plots of distribution of cell population between high- and low-AUCell score based on the median value of the AUC. (C) 
Histogram of the percentage of cell types between high- and low-AUCell score groups. (D) Bar plots of the differentially enriched pathways between 
high- and low-AUCell score groups
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genes exhibit tumor-specific expression dynamics during 
cellular differentiation, potentially contributing to tumor 
progression and influencing patient outcomes.

Validation of G6PD expression in HCC
To clinically validate our findings, we first explored the 
expression patterns of prognostic genes in an exter-
nal dataset (GSE14520). As shown in Fig. 9A, we found 
the increased expression of PFKP, TPX2, UBE2S, 

ST6GALNAC4, ADAM15, G6PD, and KPNA2, but 
decreased expression of GOT2 in tumor samples com-
pared to normal samples. High expression of PFKP, 
TPX2, UBE2S, ST6GALNAC4, ADAM15, G6PD, and 
KPNA2 associated with poor survival states, but high 
expression of GOT2 associated with favorable survival 
states (Fig.  9B). To assess the predictive sensitivity of 
these genes, the AUC value for each gene was evalu-
ated. The AUC 0.586 for PFKP, 0.654 for TPX2, 0.655 

Fig. 7  Analysis of Cell-to-Cell Communication and Cell-State Transition Trajectories with AGG Score. (A) The network of the number and weight of com-
munications across different cell types. (B) The network of the number and weight of communications between high- and low-AUCell score groups. (C) 
The network of the number and weight of communications between high-AUCell score hepatocytes and other cell types. (D) The network of the number 
and weight of communications between low-AUCell score hepatocytes and other cell types. (E) The network of the number and weight of communica-
tions across different subtypes of hepatocytes. (F) Heatmap of signaling pathways communications across different cell types. (G) Heatmap of signaling 
pathways communications between high- and low-AUCell score groups. (H) Pseudo-time and cell trajectory analysis for hepatocytes. (I) Cell trajectory 
analysis for subpopulation of hepatocytes
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for UBE2S, 0.62 for ST6GALNAC4, 0.594 for ADAM15, 
0.624 for G6PD, 0.664 for KPNA2, and 0.633 for GOT 
(Fig. 9C). These results underscore the potential of these 
genes as prognostic biomarkers for HCC. Given the 
crucial role of G6PD in HCC progression. As identified 
through transcriptomic and single-cell analyses, we fur-
ther examined its protein expression. In IHC staining, 
we observed representative images of G6PD expression 
in HCC tumor samples and normal samples (Fig.  9D-
E). Notably, G6PD expression was significantly elevated 
in tumor samples compared to normal tissues (Fig.  9F). 
These findings supported the potential role of G6PD in 
HCC pathogenesis.

Discussion
The accumulation of protein aggregates is a hallmark of 
various pathologies and plays a central role in the devel-
opment of several human diseases [18], including neuro-
degeneration [19], muscle disorders [20], Preeclampsia 
[21], diabetes [22], and cancer [23]. The selective degra-
dation of protein aggregates through AGG is essential 
for maintaining cellular proteostasis [24]. For example, 
preventing the aggregation of mutant p53 proteins has 

emerged as a promising cancer treatment strategy, aim-
ing to inhibit their misfolding and accumulation [11]. 
Increasing evidence highlights the critical role of AGG 
in cancer, with several emerging therapeutic strate-
gies targeting this process for anti-tumor interventions. 
However, the precise role and underlying mechanisms of 
aggregate autophagy in HCC remain largely unexplored. 
Therefore, understanding the role of AGGRGs and their 
regulatory mechanisms may provide novel insights and 
promising therapeutic targets for HCC.

In the current study, we investigated the prognostic 
value of AGGRGs and the impact of AGG on TME in 
HCC by integrating bulk RNA-seq and scRNA-seq data. 
First, we identified eight prognostic AGGRGs (PFKP, 
TPX2, UBE2S, GOT2, ST6GALNAC4, ADAM15, G6PD, 
and KPNA2) as prognostic signatures and calculated the 
AGG-related risk score using univariate Cox and LASSO 
regression analyses. Patients with high-risk scores exhib-
ited significantly poorer survival outcomes in both the 
training and validation cohorts. Additionally, high-risk 
patients showed increased drug resistance, further sug-
gesting an unfavorable prognosis. These findings under-
score the critical prognostic significance of AGGRGs. 

Fig. 8  Single-Cell Validation of the Prognostic AGGRGs Expression. (A) UMAP plots of each prognostic gene expression in different cell populations. (B) 
The expression dynamics of prognostic genes are differentially expressed across pseudotime. (C) The expression dynamics of prognostic genes are dif-
ferentially expressed across pseudotime between tumor samples and normal samples
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Subsequently, we conducted an in-depth investigation 
into the mechanisms by which AGG influences the TME 
in HCC, providing further insights into its potential role 
in disease progression and therapeutic resistance.

Based on scRNA-seq data, we identified eleven major 
cell types in TME of HCC, including hepatocyte, T cell, 
NK Cell, Mac, Mono, DCs, plasma B, mature B, mast cell, 
Endo, and fibroblast. Among these, hepatocytes were the 
most abundant cell type in the TME. As primary paren-
chymal cells of the liver, hepatocytes play critical roles in 
innate immunity, metabolism, detoxification, and pro-
tein synthesis [25]. In HCC tumor samples, malignant 
hepatocytes with high CNV scores have been identi-
fied. Further analysis revealed eight distinct hepatocyte 
subpopulations were identified, including hepa1 (C3), 
hepa2 (AGR2), hepa3 (GGH), hepa4 (FADS1), hepa5 
(TUBB2B), hepa6 (APOBEC3C), hepa7 (G6PD), and 
hepa8 (CCNB1).

Hepa1 (C3) is a subpopulation expresses complement 
C3. C3 is a central effector molecule of the complement 
system [26]. C3 has been identified as a novel biomarker 
in non-alcoholic fatty liver disease (NAFLD) [27], and is 
involved in cell migration, invasion, and epithelial-mes-
enchymal transition (EMT) in HCC [28]. hepa2 is char-
acterized by AGR2 (anterior gradient-2) expression, this 

subgroup demonstrates strong association with meta-
static potential. High expression of AGR2 correlates with 
unfavorable patient outcomes [29, 30]. hepa3 has been 
defined as GGH (γ-glutamyl-hydrolase) expression. GGH 
is a ubiquitously expressed enzyme and participates in 
cell proliferation, DNA synthesis and repair [31]. Its 
expression is linked to poor clinical outcome of tumors 
[31, 32]. hepa4 is a subpopulation, expresses FADS1 (fatty 
acid desaturase-1). FADS1 is a rate-limiting enzyme and 
relates to biosynthesis of long-chain polyunsaturated 
fatty acids [33]. FADS1 acts as an oncogene to promote 
tumor growth [34]. hepa5 is marked by TUBB2B (tubulin 
beta class I genes) expression and links to tumor growth, 
immune infiltration, drug resistance, and lipid metabo-
lism dysregulation [35, 36]. hepa6 is a subpopulation that 
expresses APOBEC3C (Apolipoprotein B mRNA-edit-
ing enzyme catalytic polypeptide-like 3  C). APOBEC3C 
mediates tumor immunomodulation and stemness main-
tenance across various malignancies [37]. hepa7 has been 
defined by G6PD (Glucose-6-phosphate dehydrogenase), 
which is an enzyme crucial for energy metabolism. G6PD 
plays an essential role in cell proliferation, survival, and 
stress responses, particularly in cancer contexts [38, 39]. 
Hepa8 has been characterized by CCNB1 (cyclin B1). 
CCNB1 is a key regulator of the cell cycle and serves as 

Fig. 9  Validation of G6PD Expression in HCC. (A) Box plots of the expression of prognostic genes between tumor samples and normal samples in 
GSE14520 dataset. (B) Kaplan − Meier survival curves of the survival states between high- and low- expression of each prognostic gene. (C) ROC curves for 
each gene expression. (D) IHC staining images of G6PD expression between tumor sample and normal sample, source from Human protein atlas (HPA). 
(E) IHC staining images of G6PD expression between tumor samples and adjacent normal samples from tissue microarray (Scar bar = 100 μm & 200 μm)
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a master regulator of mitotic progression [40, 41]. This 
comprehensive characterization of hepatocyte subpopu-
lations provides critical insights into the cellular hetero-
geneity and functional diversity within the HCC tumor 
ecosystem, highlighting potential therapeutic targets and 
prognostic markers for clinical application.

We further found that hepatocytes exhibited the high-
est AGG score among all cell types in the HCC micro-
environment. Subsequent cell-to-cell communication 
analysis revealed that high-AGG score hepatocytes 
established significantly more extensive and stronger 
interactions with other cell populations compared to 
low-AGG counterparts. Notably, among hepatocyte sub-
populations, hepa1 (C3) and hepa3 (GGH) emerged as 
major communication hubs, forming dense interaction 
networks with other cell types. Pseudotime trajectory 
analysis of high-AGG hepatocytes revealed a clear dif-
ferentiation pattern. hepa7 (G6PD) and hepa8 (CCNB1) 
represented early and intermediate cellular phases, while 
hepa1 (C3) and hepa2 (AGR2) corresponded to advanced 
and terminal phases. Expression profiling demonstrated 
that all eight prognostic AGGRGs were abundantly 
expressed in hepatocytes, with GOT2 and G6PD show-
ing particularly prominent expression patterns.

Additionally, dynamic analysis along the differentiation 
trajectory revealed that G6PD expression was elevated in 
the early cellular phases, while PNA2, PFKP, and TPX2 
were elevated in the advanced and terminal phases. Com-
pared to normal samples, G6PD and KPNA2 exhibited 
significant expression peaks in the early cellular phases 
in tumor samples, and more homogeneous expression 
distribution was displayed in normal samples. These find-
ings suggest that G6PD and KPNA2 may server as poten-
tial biomarkers for early diagnosis, prognosis prediction, 
and patients stratification in HCC. Therefore, we further 
investigated the expression of AGGRGs and their clinical 
relevance in a independent cohort. External validation 
using the GSE14520 cohort confirmed the prognostic 
significance of AGGRGs, with G6PD showing consistent 
clinical relevance. Immunohistochemical validation at 
the protein level demonstrated significant G6PD over-
expression in HCC tissues compared to normal controls, 
corroborating previous study linking elevated G6PD con-
tributes to cell migration and invasion, as well as poor 
prognosis of HCC [42].

In our study, we comprehensively integrate the single-
cell transcriptomic data, bulk RNA-seq data, and protein 
expression data to explore the prognostic value of AGG 
in HCC. We identified cell subpopulations associated 
with AGG and elucidated the role of prognostic genes 
in cell differentiation and tumor progression. Although 
our study provides important insights into AGG in HCC, 
our study has certain limitations. Future research will 
focus on further validating the mechanisms of AGGRGs 

in HCC using various approaches, including in vitro cell 
experiments and in vivo animal models.

Conclusion
In conclusion, our study is the first to discover the role 
and underlying mechanisms of AGG in HCC, and to 
identify the potential promising diagnostic and treatment 
targets for HCC.
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